
ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

ASD runtime semantics with code integration examples

ASD Runtime 9.2.3

TABLE OF CONTENTS

● Overview
● ASD Execution semantics

�❍ Background for ASD Component design
■ Interface models and Design models
■ SBS with rules and rule cases

�❍ Operational semantics
■ Durative and non-durative actions
■ Notification events
■ Run-To-Completion semantics
■ Monitor semantics
■ Timers

�❍ Thread context switching and monitor semantics in practice
�❍ The Single-threaded execution model

■ The semantics of the Single-threaded execution model
■ Limitations of the Single-threaded execution model

�❍ Single-threaded vs. Multi-threaded - Instantiated resources
● Download and install

�❍ ASD Runtime download using the ASD:Suite ModelBuilder
�❍ ASD Runtime download using the ASD:Suite Commandline Client

● Code integration guidelines
�❍ C++

■ The ASD Runtime
■ Parameter definition and parameter passing
■ Component integration
■ Supported compilers and boost versions
■ Trace outputs: content and customization
■ System failure: content and customization

�❍ C#
■ The ASD Runtime
■ Parameter definition and parameter passing
■ Component integration
■ Supported compilers and execution platforms
■ Trace outputs: content and customization
■ System failure content and customization

�❍ Java
■ The ASD Runtime
■ Parameter definition and parameter passing
■ Component integration
■ Supported compilers and execution platforms
■ Trace outputs: content and customization
■ System failure: content and customization

�❍ C and TinyC
■ C versus TinyC
■ The ASD Runtime
■ Parameter definition and parameter passing
■ Component integration
■ Supported compilers and execution platforms
■ Custom OSAL support
■ Trace outputs: content and customization
■ System failure: content and customization
■ RAM and ROM footprint optimizations

● Build integration guidelines
�❍ Tools
�❍ Integration

■ Example makefile

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/toc [08/05/2014 13:38:54]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

ASD runtime semantics with code integration examples

User Guide

ASD Runtime 9.2.3

This is a description of the ASD Runtime, a software package distributed as part of the ASD:Suite. The ASD Runtime enables source
code generated with the ASD:Suite to be executed on a specific execution platform. Additionally, the ASD Runtime package
implements the semantics required to ensure the compatibility between the generated code and the verified ASD models from
which the code was generated.

In the "ASD Execution semantics" section you can find a description of how ASD components work at runtime, and in "Download
and install" you can find guidelines to download the ASD Runtime.

In "Code integration guidelines" you can find descriptions about the content and role of the items in the ASD Runtime , together
with guidelines for integrating the ASD generated code into your system.

In "Build integration guidelines" you can find descriptions about the content and role of the commandline tools, together
with guidelines for integrating these tools into your build process.

Copyright (c) 2008 - 2014 Verum Software Tools BV

ASD is licensed under EU Patent 1749264, US Patent 8370798 and Hong Kong Patent HK1104100

All rights are reserved. No part of this publication may be reproduced in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/overview [08/05/2014 13:38:58]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Interface models and Design models

ASD is a component-based technology whereby a system is defined in terms of ASD components and foreign components. A
component is the common unit of architectural decomposition, specification, design, formal verification, code generation and
runtime execution. An ASD component is a software component that is specified, designed, verified and implemented using ASD and
is specified by:

1. An ASD interface model specifying a service: the externally visible behaviour of a component, and

2. An ASD design model specifying its inner working and how it interacts with other components.

An ASD component implements a service that is used by its clients and can use services that are implemented by its servers.

Collectively, the services between a component and its clients and servers form an imaginary border, called the component
boundary. Information crosses this boundary in the form of events where one component sends the event (action) and
another component receives the event (trigger):

● A trigger is either a call event coming from a client, a reply event coming from a server or a notification event coming from a server.

● An action is a call event that is sent to a server, a reply event sent to a client, or a notification event that is sent to a client.

Foreign components are hardware or software components of a system that are not developed using ASD. For example, third
party components, legacy code or handwritten components representing those parts of a system that cannot be or are not
generated from ASD designs. As they need to be used by ASD components, they must correctly interface and interact with them.
The externally visible behaviour of each foreign component is specified in the form of an ASD interface model; foreign components
do not have a corresponding ASD design model. These interface models are used for two purposes:

● Firstly, they are used when verifying an ASD component design. They represent allowable interactions of the ASD component with
its environment.

● Secondly, they are used in code generation to create the correct interface header files in the specified target programming language.

The following figure depicts an ASD component A implementing a service SA and making use of components B, C and D via
their respective services SB, SC and SD. Components B, C and D can be ASD components or foreign components.The
component boundary comprises services SA, SB, SC and SD. The design of component A is specified in an ASD design model as will
be the designs of any of the used components that are also ASD components. Each of the services is specified by an ASD
interface model, irrespective as to whether or not the components implementing them are ASD components.

Context of an ASD component design

An ASD interface model...:

● ...describes the externally visible behaviour of a component and is as implementation-free as possible, meaning that the model
defines what the component does under every circumstance but not how the component will do it. This allows the external
behaviour to be specified independently of any specific implementation.

● ...is an abstraction of the component or system implementation that every compliant design is required to implement.

● ...is defined in terms of those events that pass between the component and its clients and contains two types of information:
�❍ method signatures specified in a manner consistent with the chosen target programming language, and
�❍ externally visible behaviour specified in the form of a Sequence-Based Specification (SBS).

Additionally, an interface model can define one or more modelling events These are used to model the hidden internal behaviour of the
design.

● ...is used, during code generation, to generate only interface declarations and not to generate executable logic.

An ASD design model ...:

● ...describes the complete internal behaviour of a component, thereby defining one of the (many) possible implementations
that faithfully comply with its implemented interface model. It is defined in terms of events that pass between the component,
its clients and its servers only.

● ...contains behaviour in the form of one or more SBSs; information is imported from the set of interface models specifying
the component boundary. To handle complex designs, a design model can be hierarchically decomposed into a main machine and
one or more sub machines.

● ...is used, during code generation, to generate only executable logic and not to generate interface declarations.

© 2014 Verum Software Tools BV All rights reserved

http://community.verum.com/documentation/runti...d_component_design/interface_and_design_models (1 of 2) [08/05/2014 13:39:04]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx

ASD Runtime Guide

Terms of use | Privacy Policy

http://community.verum.com/documentation/runti...d_component_design/interface_and_design_models (2 of 2) [08/05/2014 13:39:04]

http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

SBS with rules and rule cases

Within ASD, both interface and design models are made in the form of Sequence-Based Specifications (SBS). Behaviour is specified in
a tabular form as a total Black Box function, by mapping all possible sequences of triggers to the corresponding actions.

An SBS is divided into equivalence classes, each of which corresponds to a state in a Mealy machine. A Mealy machine is a
sequential machine in which the output depends on both the current state of the machine and the input.

The state diagram of a simple Mealy machine

Within each state, the SBS must define a rule for every possible trigger and each rule has one or more rule cases that define the
resulting actions.

Rule cases can be enabled or disabled by using guards which are expressed as boolean expressions over state variables, i.e. when a
guard is evaluated as false, the rule case is disabled; when the guard is evaluated as true, the rule case is enabled. A rule case
without a guard is equivalent to a rule case with a constant guard "true". State variables are the means by which fine-grained history
is captured and guards are the means by which fine-grained history-based control flow decisions are made.

In addition to its guard, each rule case specifies

● a sequence of actions to be executed sequentially,

● zero or more simultaneous assignments to state variables and

● the next state

Screenshot of an SBS fragment from an ASD Interface Model

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_...sd_component_design/sbs_with_rules_and_rule_cases [08/05/2014 13:39:08]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/docs/runtime_guide/9.2.7/img/image004.png
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Operational semantics

The ASD Runtime supports two types of execution models: The Multi-threaded execution model and the Single-threaded
execution model.

In the Multi-threaded execution model, each ASD component that uses a service with a notification interface gets a Deferred
Procedure Call (DPC) thread that empties the component queue. Furthermore, the ASD Runtime uses Operating System (OS)
synchronization primitives for Multi-threaded applications. See "Notification events" and "Thread context switching and
monitor semantics in practice" for details.

In the Single-threaded execution model, no threads are instantiated in the ASD components and execution of the events takes
place synchronously. See "The Single-threaded execution model" for details.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_gu...s/operational_semantics/operational_semantics_intro [08/05/2014 13:39:12]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Durative and non-durative actions

An architecture built using ASD components follows the client-server pattern, where clients can synchronously invoke one or
more servers, and servers can asynchronously invoke notifications to clients.

A durative action is where a client synchronously invokes an operation on a server and the result (a notification) comes later (i.
e. asynchronously). Until the operation returns, the client remains blocked and it cannot invoke other operations at the same or
other servers. After the method has returned to the client, the server is processing the durative part and eventually informs the
client asynchronously through the notification.

A durative action

A non-durative action, on the other hand, is where the client synchronously invokes an operation on the server and remains
blocked until the server has completely processed the request.

A non-durative action

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_g...tional_semantics/durative_and_non_durative_actions [08/05/2014 13:39:16]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Notification events

Notification events usually carry the result of a durative action but they can also inform the client about spontaneous actions on
the server side.

In the Multi-threaded execution model the notification events are executed in a decoupled way: the server synchronously posts
the notification event in a queue of the client after which the DPC server thread of the client will pick it up and execute it. DPC
stands for Deferred Procedure Call.

In the Single-threaded execution model the server synchronously posts the notification event in a queue of the client and it informs
the client that notifications are available for processing, after which the execution thread processes the respective notification(s).
See "The Single-threaded execution model" for details.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_gu...semantics/operational_semantics/notification_events [08/05/2014 13:39:20]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Run-To-Completion semantics

Within ASD, the run-to-completion semantics refers to the execution at runtime of one rule case. It has the following meaning:

● All actions are completely processed before the transition to the next state occurs

● All state variable updates are performed before the transition to the next state occurs

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_g.../operational_semantics/run_to_completion_semantics [08/05/2014 13:39:23]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Monitor semantics

Within ASD, it is assumed that the components have monitor semantics, i.e. only one client has access to the component at any time
(components are non-reentrant). The following figure provides a graphical representation of what is meant by monitor semantics
within ASD:

Monitor semantics within ASD

In the above picture, it is important to note that the order of invoking notifications by a server is independent of the order of
invoking methods at the server. The request of client B is processed later by the server, but the durative part is completed earlier as
client B is invoked by the corresponding notification earlier than client A. Additionally you can observe that the processing of client B
is only started after synchronously replying to the request of client A.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_g..._semantics/operational_semantics/monitor_semantics [08/05/2014 13:39:27]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Timers

ASD components can make use of the ASD Timer service by instantiating as many Timers as they need. Timers are commonly used
within mechatronics and communication systems for guarding against failures. ASD timer components are supplied as part of the
ASD Runtime package. This is done to make them independent of execution platforms and to provide the timer cancel guarantee.

Note: The ASD Timer service can be used only in design models having Multi-threaded as execution model.

When using a timer to guard a mechanical movement, for example, a component will be expecting either a notification event
signifying the movement has ended or a timer event signifying that the notification event did not arrive within the expected time. If
the movement-ended notification event is received first, the design will cancel the timer. In many runtime environments the request
to cancel a timer request can race with the expiration of the respective timer. This racing results in a component receiving timer
expired signals from (just) cancelled timers. Unless the runtime environment provides mechanisms for dealing with such situations,
this adds unnecessary complexity in the design, often causing errors.

An ASD component which uses the ASD timer guarantees that if a timer has been cancelled before the rule corresponding to the
timer expiry event has been executed, the timer event will never be seen by the component and the corresponding rule will not be
executed.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_g...d_execution_semantics/operational_semantics/timers [08/05/2014 13:39:31]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Thread context switching and monitor semantics in practice

Within ASD, rules are executed atomically. When a component receives a trigger in a state, the guards of every rule case belonging
to the rule are evaluated and the enabled rule case selected. If there is more than one enabled rule case (interface models only), the
choice between them is non-deterministic. The actions are executed sequentially and when completed, the state variable updates
(if any) are performed using simultaneous assignment semantics and a transition is made to the next state.

An ASD component synchronously executes client triggers using the clients' thread context. In contrast, notification events that it
receives from its servers are decoupled via a FIFO ordered queue and are executed by a DPC server thread belonging to the
component. This is done so that a server is never blocked when invoking a notification event implemented by its clients, thus
removing a common cause of deadlocks emerging during system composition. Both the queue and the DPC server thread are
generated automatically as part of the component if any of its servers has a notification interface. An ASD component must
therefore be thread-safe in the face of competing requests for service by multiple client threads and its own DPC server thread.

An ASD component behaves like a pair of nested monitors in order to serialise access by competing client threads and its own DPC
server thread. The following figure presents two monitors set up as nested monitors:

A pair of nested monitors

In ASD the outer monitor is called the client monitor and serves to serialise client access to the component. The inner monitor is
called the component monitor and serves to serialise access between a client thread and the component's DPC server thread,
thereby implementing the atomicity property of rule execution in both the formal models and the resulting code. The DPC server
thread always takes precedence over the client thread when competing for the component monitor and this is guaranteed by
explicit synchronisation, making it unaffected by thread priorities or scheduling policies of the underlying OS. Once inside the
component monitor, the DPC server thread sequentially processes all notification events in the queue by invoking the
corresponding triggers on the component before exiting the component monitor.

ASD uses the synchronisation primitives of the underlying target platform OS to implement the client and component monitors. As
such, ASD imposes no ordering on the sequence in which pending client requests are serviced by a component. When one client
request is processed to completion, the ASD Runtime instructs the underlying OS to select one of the waiting Client threads and
schedule it for execution. The selected client thread and thus the effect of thread priorities is determined by the underlying OS and
not by ASD.

When a client thread invokes a trigger it must enter both the client monitor and the component monitor and atomically execute the
corresponding rule. When the rule has been completely executed, the client thread exits the component monitor and must pass the
client barrier before it can exit the client monitor. If the client barrier is closed, the client thread is blocked from further execution
inside the client monitor (but outside the component monitor to ensure that the DPC server thread can access the component); if
the client barrier is open, the client thread exits the client monitor and continues execution without waiting.

The client barrier is closed when the client thread enters the client monitor and before it starts executing any rule; it is opened
when some rule case executes a set of actions containing a matching reply to the client trigger. If the rule corresponding to the
client trigger contains this reply, the client barrier will be open when the rule execution is completed and the client thread will
continue without waiting. Otherwise, the client barrier remains closed and the client thread remains blocked inside the client
monitor until the client interface is subsequently opened as a result of some (asynchronous) notification event originating from a
server. In such case, the client thread can continue to execute the moment the DPC server thread has processed the corresponding
reply event that has opened the client barrier. Such continuation fully depends on the scheduling algorithm within the operating
system.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_g...mantics/thread_context_switching_monitor_semantics [08/05/2014 13:39:35]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

The Single-threaded execution model

The Single-threaded execution model is useful in a thread constrained environment or when simply a large number of components
are instantiated.

Generally speaking, the main feature of the Single-threaded execution model is that no DPC server thread is instantiated to
process notification events. Notification events are still decoupled by a queue, but they are processed in a different manner:

1. When a client thread would normally leave the component monitor (as a result of a matching reply event), the client thread is now re-
used to process notification events;

2. Spontaneous notification events from a used server that are not the result of a client request are processed by an explicit request
from the used server.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_g...inglethreaded_execution_model/singlethreaded_intro [08/05/2014 13:39:38]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

The semantics of the Single-threaded execution model

The basic behaviour of Single-threaded execution model is demonstrated in the following composition of a client ASD component
and two used components (UC1 and UC2).

Component architecture where the ASD Single-threaded execution model is recommended

The following list reflects the processing flow of a trigger with a notification event as associated action:

1. The Framework invokes the API.E1 trigger on the ASD Component, which, in its turn, invokes UC1 via UC1:API.E1 (see rule case number
3 in ASD_Component_SBS).

2. UC1:API.E1 starts a durative action, the completion of which is notified by a later event from the framework. It also sends a notification
event UC1:NI.NE1 (see rule case number 3 in UC1_SBS).

3. The return from UC1:API.E1 signals the end of the component's list of actions (in this case there is only a single action in the list) and so
the component performs any state variable updates and transits to State_2. This obeys the atomic rule execution required by the ASD
operational semantics.

4. Before the ASD Component sends a reply to the Framework, the ASD Proxy, a proxy for the ASD Component, checks the component's
queue, the ASD Queue, and empties it by sequentially executing the rules corresponding to every notification event in the queue; in
this example there is one such notification event, namely UC1:NI.NE1. The rule corresponding to this notification event is the rule in the
component's State_2 (see rule case number 11 in ASD_Component_SBS). These actions are all performed under the thread context of
the ASD Component's client, namely the Framework.

5. When all queued notification events are processed to completion, the ASD Component sends a return to the Framework, leaving itself
in State_3.

6. Subsequently, the Framework invokes some bottom edge interface on UC1 to signal the completion of the durative action it started
earlier triggered by UCI:API.E1 (see rule case number 3 in UC1_SBS). The corresponding rule is executed under whichever thread
context is used by the Framework for this call. The response of UC1 is to send the UC1:NI.NE2 notification event to the ASD
Component; this is queued in the ASD Queue as usual.

7. Before returning to the framework, UC1 is required to notify the ASD Proxy that it has reached the end of its rule and thus any pending
notification events in the ASD Queue must be processed. In the diagram below, this is the red event called UC1:ASD.processCBs.

Note: the processCBs method it is not to be specified as an event in the ASD model, it is inserted by the code generator at the right
place in the generated code.

The ASD Proxyempties the ASD Queueand processes each event to completion, in this case the single event UC1:NI.NE2.The rule
for this event is processed by the ASD Componentin its State_3.
8. The Client invokes UC2 via UC2:API.E1 when processing trigger UC1:NI.NE2.

9. UC2 responds to an UC2:API.E1 by posting two notification events, namely UC2:NI.NE1 and UC2:NI.NE2. These are placed into the ASD
Queue.

10. The used component UC2 sends a reply to the ASD Component completing the actions of the rule for UC1:NI.NE2. The ASD Component
in its turn completes any state variable updates, transits to State_4 and sends a reply to the ASD Proxy.

11. The ASD Proxy continues to empty the ASD Queue, in this example processing UC2:NI.NE1 and UC2:NI.NE2 and eventually sends a
return to UC1 (see the red return event at the bottom of the sequence diagram). UC2:NI.NE1 is processed as expected in State_3, UC2:
NI.NE2 is processed in State_5 and the ASD Component transits to State_1.

(part of) SBS of the design model for ASD Component

http://community.verum.com/documentation/runti...eaded_execution_model/singlethreaded_semantics (1 of 2) [08/05/2014 13:39:44]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/docs/runtime_guide/9.2.7/img/image010.png

ASD Runtime Guide

(part of) SBS of the interface model for used component UC1

SBS of the interface model for used component UC2

Sequence diagram for the Single-threaded execution model

In the Single-threaded execution model, the used component must cooperate in its behaviour with the proxy of the ASD Component
at runtime in order to achieve the necessary runtime behaviour. In particular, after executing the behaviour corresponding to
the modelling event rule case (i.e. one corresponding to a notification event), it must give the ASD Runtime the opportunity
to sequentially process any queued notification events before it returns to the Framework.

If the used component is an ASD component this cooperative behaviour can be guaranteed in the generated code. Otherwise, if
the used component is a foreign component, this cooperative behaviour has to be implemented by hand in the used component.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runti...eaded_execution_model/singlethreaded_semantics (2 of 2) [08/05/2014 13:39:44]

http://community.verum.com/docs/runtime_guide/9.2.7/img/image011.png
http://community.verum.com/docs/runtime_guide/9.2.7/img/image012.png
http://community.verum.com/docs/runtime_guide/9.2.7/img/image013.png
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Limitations of the Single-threaded execution model

Although the Single-threaded execution model has the advantage of reduced resource consumption, the usage of this model is
more restricted than the Multi-threaded model:

1. See "Single-threaded vs Multi-threaded - Instantiated resources" for limitations in using Single-threaded components in combination
with Multi-threaded components.

2. A Single-threaded component can only be accessed via a single thread.

3. ASD Timers cannot be used in the Single-threaded context because their implementation relies on the Multi-threaded execution
model, i.e. they rely on having DPC threads.

4. A client call event may not rely on a used service notification event for generating the reply since this causes a deadlock in a Single-
threaded context (the single thread is waiting for another thread to post a notification event, but by definition no other thread is
allowed to do that).

5. Broadcast notification interfaces are not supported.

6. Not using all interfaces of used Single-threaded services is not supported. A design model using a Single-threaded service must use
all of its interfaces.

7. Yoking is not supported. Yoking has no meaning in a Single-threaded context.

8. Singleton notification events are not supported. Singleton notification events have no meaning in a Single-threaded context.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_g...hreaded_execution_model/singlethreaded_limitations [08/05/2014 13:39:48]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Single-threaded vs. Multi-threaded - Instantiated resources

An ASD component can implement a Single-threaded interface model or a Multi-threaded one. See "Specifying the execution model"
for details. Similarly it's used components can either all implement Single-threaded interface models or all implement Multi-
threaded interface models. See the following table for resource instantiation depending on the various combinations:

 The ASD component
implements a

Single-threaded
interface model

The ASD component
implements a

Multi-threaded
interface model

All used components
implement
Single-threaded
interface models

Allowed

No DPC thread created

No mutexes/condition
variables created

Not allowed

All used components
implement
Multi-threaded
interface models

Allowed
only with certain conditions
e.g. no notification events

No DPC thread created

No mutexes/condition
variables created

Note: Errors might be
reported if some of the
Multi-threaded models do
not conform to the
expected rules.

Allowed

DPC thread created

Mutexes/condition
variables created

There is at least one used
component which
implements a Single-
threaded interface model
and
there is at least one used
component which
implements a Multi-
threaded interface model

Allowed
only with certain conditions
e.g. no notification events

No DPC thread created

No mutexes/condition
variables created

Note: Errors might be
reported if some of the
Multi-threaded models do
not conform to the
expected rules.

Not allowed

No used components Allowed

No DPC thread created

No mutexes/condition
variables created

Allowed

No DPC thread created

Mutexes/condition
variables created

Basically, the execution model property of the implemented service determines the use of Multi-threading primitives. The
execution model property of the used service determines the creation of the DPC thread. See "Specifying the execution model" for
details about how to see and/or change the execution model property.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_g...asd_execution_semantics/singlethreaded_vs_standard [08/05/2014 13:39:51]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/execution_model
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/execution_model
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

The ASD Runtime software package

The ASD Runtime is a software package which enables ASD:Suite generated code to run on various software development
platforms. The ASD Runtime is provided as source code in a target programming language, therefore it has to be compiled by you
in your software project, in the same way as you compile any other source module written (or generated) in the respective
programming language.

The ASD Runtime software package is available for download from the ASD Server. The ASD Runtime is language specific, i.e. there
is one package for each target programming language supported by the ASD:Suite. The number and type of files in the ASD
Runtime software package vary according to the selected language.

The used version of the ASD Runtime must match the selected code generator version, otherwise compilation errors will occur in
the generated code. A new ASD Runtime is released with each code generator version.

The ASD Runtime should not be modified/altered by you. If you do so the guarantees provided by ASD are invalidated.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/download/download_intro [08/05/2014 13:39:55]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

ASD Runtime download using the ASD:Suite ModelBuilder

The following describes the steps you should take to download the ASD Runtime for a specific programming language using the
ASD:Suite ModelBuilder:

1. Select the "Code Generation->Download Runtime..." menu item. A Download Runtime dialog box appears.

Menu item to download the ASD Runtime

2. Choose the code generator language and version number from the provided dropdown lists. Select the output path where to store
the ASD Runtime files. Select the OK button to begin the ASD Runtime download.

The "Download Runtime" dialog window

When finished, a list of the ASD Runtime files that have been downloaded will appear in the "Output Window" of the ASD:
Suite ModelBuilder. The download is complete when the "==== Finished successfully ====" message appears.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_g...px/9.2.7/download/download_asd_runtime-using_suite [08/05/2014 13:39:59]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

ASD Runtime download using the ASD:Suite Commandline Client

You can download the ASD Runtime using the ASD:Suite Commandline Client following these steps:

1. Open a DOS command window. This can be done by opening the Windows Start Menu and then selecting the "ASD Suite
Release <release_number> V<version_number> --> ASD Client Command Prompt" option from the program list.

2. Type in the following command at the DOS prompt:

AsdGenerate --runtime -v <code_generator_version> -l <language> -o <output-dir>

�❍ Replace <code_generator_version> with the version of the ASD Runtime you wish to download

�❍ Replace <language> with 'cpp', 'csharp', 'java', 'c' or 'tinyc'.

�❍ Replace <output-dir> with the path where you wish the ASD Runtime files to be downloaded.

Note: there are additional settings that you may need to supply, like user credentials. For a list of all ASD Runtime download
options, type in the following command at the DOS prompt: AsdGenerate -h

For example:

AsdGenerate --runtime -v 9.2.3 -l cpp -o X:\code\runtime

downloads the files of the C++ ASD Runtime version 9.2.3 into the "X:\code\runtime" directory.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_...px/9.2.7/download/download_asd_runtime-using_asdc [08/05/2014 13:40:03]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

How to integrate the generated code in your development environment

When you have generated code from ASD models, you can start integrating the code into your application.

Read the following sections for code integration related information for the various languages supported by ASD and the ASD:
Suite.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_gui...f.aspx/9.2.7/code_integration/code_integration_intro [08/05/2014 13:40:07]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

The ASD Runtime for C++

The following files make up the ASD Runtime package for C++

File Name Description

asdDefConfig.h Header file containing configuration of ASD Runtime

asdInterfaces.h A set of ASD dedicated interfaces, currently for Single-
threaded execution model

asdSingleThreaded.h Interface and implementation of Single-threaded
execution model

asdMultiThreaded.h Interface of Multi-threaded execution model

asdMultiThreaded.cpp Implementation of Multi-threaded execution model

asdDiagnostics.h Interface to the diagnostics tracing and illegal handlers

asdDiagnostics.cpp Implementation of the default diagnostics tracing and
illegal handlers

asdDataVariable.h Utility for data variables

asdPassByValue.h Utility to guarantee pass by value semantics for
parameter passing

asdTransfer.h Utility for parameter passing

asdUsedServiceRef.h Utility for used service reference operators

The C++ ASD Runtime files support the generated ASD C++ code and provide an interface to handwritten code. The sections of the C+
+ ASD Runtime files that support ASD generated code have a specific format and may NOT be edited and the respective files should
NOT be included in any handwritten code. These sections in the files are prefaced by "namespace asd_<#>" where <#> is a specific
build version number. Example: namespace asd_31362.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/code_integration/cpp/cpp_runtime [08/05/2014 13:40:11]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Parameter definition and parameter passing in C++

The declaration of parameters and how they are passed on as arguments in an ASD design model is described in the user manual.
This section describes the language specific details for C++. Foreign code that interfaces with the ASD generated code must adhere
to the semantics as defined here.

There are no type checks for parameters. It is your job to ensure that the specified types are correct. For example, all parameters
that are used with a certain data variable must have the same type. Errors caused by wrong type specifications appear as
compilation problems when you attempt to compile the generated code in your development environment.

Parameter passing in C++
For [in] parameters in C++ the following holds:

● An [in] parameter can be of any C++ type or user defined type. Note that the designer must ensure that such user defined types
are accessible (to the compiler) using the import/include field.

● An [in] parameter is always passed by const-reference for all events.

● Where the type evaluates to a pointer, the pointer is the underlying "value type" passed by const-reference. In such case, the
lifecycle management of the referenced values is not managed by ASD.

● An [in] parameter can not be declared "volatile".

● The [in] parameters of notification events are copied to avoid common data-racing issues that can occur in Multi-threaded
environments, and therefore their types must be copyable. Since copying is performed using the copy constructor, a public copy
constructor with usual semantics must be available.

For [out] and [inout] parameters in C++ the following holds:

● An [out] or [inout] parameter can be of any C++ type or user defined type. Note that the designer must ensure that such user
defined types are accessible (to the compiler) using the import/include field.

● All [out] and [inout] parameters are passed by reference.

● All [inout] arguments must be initialised (i.e. they must have a pre-existing value).

● An [out] parameter has true out-semantics and pre-existing values are not available anymore. For foreign code it is assumed that
no partial updates have been performed.

● ASD requires that the first use of an [out] parameter of an application call event used as trigger is (also) an [out] parameter of an
application call event used in a sequence of actions. Subsequent uses of the respective parameter can be as [in], [out] or [inout]
parameter of an application call event used in a sequence of actions.

For the data variables the following holds:

● Because data variables are being read and written to, the data variable type cannot be const.

● Data variables are being initialised to zero during construction of the component.

● The type must be copyable.

● The type must implement a public assignment ("=") operator with the expected, usual semantics; other semantics or those with
side effects are not guaranteed to compile, link or execute correctly.

● The type must have a public default constructor

● The type must have a public destructor.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_g..._pdf.aspx/9.2.7/code_integration/cpp/cpp_parameter [08/05/2014 13:40:14]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/parameters/parameters_intro
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/referencing
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/referencing
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/parameters/data_variables
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Component integration in C++

This section describes how handwritten client components and/or handwritten used components can be made to work with the
ASD generated components. The best way to go about this is to make use of the stub generator that is present in the ASD:
Suite ModelBuilder. The paragraphs below describe how to use the stub generator effectively to quickly generate code for
respecively the handwritten client component(s) and handwritten used component(s). In addition this section also described
how component creation works with construction parameters

Stub generation for calling components
To generate code for a handwritten client component, the following steps should be carried out:

1. Open the respective ASD interface model in the ASD:Suite ModelBuilder.

2. Start stub generator by right-clicking the interface model in the Model Explorer window or by selecting it in the Code Generator menu.

3. Select the language (C++ in this case) as well as the version.

4. Select the "Client Stub" radio button and fill in the following options:
�❍ Fill in the name of the stub component to be generated in the construction parameter field. This name is the name of the calling

component that is created for you including all queue plumbing, notification registration, etc.
�❍ Fill in the name of the used component that is to be referred in the construction parameter field. This name should be the same as the

name of the construction parameter in those ASD design models where this ASD interface model is referred to as a used service.
Tip: Load the design model that uses the interface model for which you want to generate a stub. Select the interface model and
right-click it; the ModelBuilder has now filled in the name of the used component for you as it matches the name of the
construction parameter as found in the service references tab.

5. Select the output path where the generated stub should go to.

6. If desired, select "Save Settings" to remember these settings for a next time that stub code needs to be generated.

7. Finally, press "OK" to start the stub generation after which the files are generated. You need to remove the "_tmpl" from the
file extension after which the files are ready for use. When you already have generated stub code before, you can use a merge tool
to compare and merge the generated stub code.

The generated stub code for the client component for C++ can be found here.

Stub generation for used components
To generate code for a handwritten used component, the following steps should be carried out:

1. Open the respective ASD interface model in the ASD:Suite ModelBuilder.

2. Start stub generator by right-clicking the interface model in the Model Explorer window or by selecting it in the Code Generator menu.

3. Select the language (C++ in this case) as well as the version.

4. Select the "Used Component Stub" radio button and fill in the following options:
�❍ Fill in the name of the component to be generated in the construction parameter field. Note that this name should be the same as

the name of the construction parameter in those ASD design models where this ASD interface model is referred to as a used service.
�❍ Select the component type in the dropdown menu.
�❍ Select "Generate debug info" if you want trace statement to be included in your stub code.
�❍ Select "Generate synchronization primitives" if you want your functions to contain mutexes in order to be thread-safe. This is

typically not needed in the Single-threaded model. In the Multi-threaded this can be needed when the stub has multiple clients
and contains, for example, data that requires thread-safe access.

5. Select the output path where the generated stub should go to.

6. If desired, select "Save Settings" to remember these settings for a next time that stub code needs to be generated.

7. Finally, press "OK" to start the stub generation after which the files are generated. You need to remove the "_tmpl" from the
file extension after which the files are ready for use. When you already have generated stub code before, you can use a merge tool
to compare and merge the generated stub code.

The generated stub code for the used component for C++ can be found here.

Component creation using component construction parameters
The typical use-cases for designing ASD components using component construction parameters are systems in which it is undesirable
or impossible at design time to specify which implementations will fulfil the dependencies or when the design relies on multi-
client interfaces on non-singleton components, i.e. construction-time diversity or shared multiple:

● Construction-time diversity can be used when the choice between different implementations of components (or sub-systems)
depends on system configuration and can be resolved before ASD components are instantiated. For example, the implementation of
a protocol handler will be instantiated to match system configuration settings specifying which communication protocol should be
used or which camera driver implementation is selected to match the actual camera hardware detected.

● Multiple shared instances of an ASD component can exist in a programs' address space if it has component type Multiple. When
two different component instances need to use the same instance of a used service that used service has a multi-client
interface. Component construction parameters should be used to bind the different client components to the shared used
service instance when the used service implementation cannot be made Singleton.

Note: See "Specifying the component type" for details about component types, Singleton or Multiple.

When you define construction parameters in the Model Properties of a design model, they end up in the signature of the GetInstance
() method. You can read more about construction parameters in "Defining construction parameters".

Construction parameter GetInstance parameter
[in] myparameter: std::string const asd::value< std::string >::type& myparameter
[in] myparameter: service(Sensor) const boost::shared_ptr<SensorInterface>& myparameter
[in] myparameter: service[](Sensor) const std::vector<boost::shared_ptr<SensorInterface>>& myparameter

Component instance life-time is controlled by the number of references to the instance. Each dependent component instance has
a reference to each injected dependency instance. The handwritten client code responsible for building the instance hierarchy
using construction parameters also holds a reference to each instance. Control over instance life-time is effectively passed
to components to which the instance was injected when the builder releases its reference. The builder maintains in control of
instance life-time when the builder keeps its reference.

The code generated for "Singleton" and "Multiple" ASD components using construction parameters is identical. The handwritten

http://community.verum.com/documentation/runti....aspx/9.2.7/code_integration/cpp/cpp_component (1 of 2) [08/05/2014 13:40:19]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/generate_stub
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/construction_parameters/default
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/construction_parameters/default
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/create_dm/service_reference
http://community.verum.com/documentation/runtime_guide.aspx/9.2.7/code_integration/cpp/cpp_clientstub_example
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/generate_stub
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/construction_parameters/default
http://community.verum.com/documentation/runtime_guide.aspx/9.2.7/code_integration/cpp/cpp_usedstub_example
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/component_type
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/construction_parameters

ASD Runtime Guide

client building the instance hierarchy should call <component>::ReleaseInstance() on each singleton component it instantiates
when the singleton components are generated following the regular ASD construction mechanism.

Thus, the builder is responsible for the life-time of all singleton instances in the instance hierarchy.

Justification: <component>::ReleaseInstance() is not called on dependencies of components using construction parameters.
A component using construction parameters knows only the dependency interfaces. Consequently it cannot call the ReleaseInstance
() associated with a specific implementation of that interface.

Note that the need for use of the singleton pattern is greatly reduced when construction parameters are used to facilitate the use
of multi-client interfaces.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runti....aspx/9.2.7/code_integration/cpp/cpp_component (2 of 2) [08/05/2014 13:40:19]

http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

OS support - supported compilers and boost versions for C++

For C++ the underlying OS support is ensured by the usage of boost primitives www.boost.org.

These are the supported / not-supported (boost-version,compiler) pairs:

 - supported, - not supported

Boost version gcc 4.3.6 gcc 4.4.6 gcc 4.5.3 gcc 4.6.1 Visual Studio 2008 Visual Studio 2010

boost_1_42_0

boost_1_43_0

boost_1_44_0

boost_1_45_0

boost_1_46_1

boost_1_47_0

Note: Due to a change in the cygwin library set, applications based on C++ code generated with the ASD:Suite and compiled and
built with gcc 4.6.1 do not execute under cygwin 1.7.18-1 (or newer).

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/code_integration/cpp/cpp_osal [08/05/2014 13:40:22]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://www.boost.org/
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Trace outputs in C++: content and customization

The ASD Runtime for C++ collects the following information with the generated trace statements :

● component identifier

● state identifier

● interface identifier

● trigger identifier

● function

● file

● line

This information is gathered together by an instance of the asd::diagnostics::info struct which is passed to the overridable trace
handler. The pre-processor is used to collect function, file and line information when available.

Depending on the environment (OS, compiler, libraries) used to deploy the generated code, thread identifier and/or call stack,
etc. could be additionally traced by supplying a custom trace handler. The default trace handler (asd::diagnostics::handler) uses
the "cout" standard library facility to write this information to standard out.

The following code snippet is an example of trace handler customization/redefinition and set-up:

#include "diagnostics.h"
#include <string.h>
#include <iostream>

using namespace std;

static void my_tracehandler (constasd::diagnostics::info& i)
{
 using namespaceasd::diagnostics;
 std::cout << (i.type == info::enter ? "-->": i.type == info::exit ? "<--" : "illegal")
 << " " << i.component // contains the component name
 << " " << i.state // contains the current state of the component
 << " " << i.channel // contains the interface channel name
 << " " << i.stimulus // contains the stimulus name
 << " " << i.file // contains the file name
 << " " << i.member // contains the member function of the class
 << " " << i.line // contains the line number in the file
 << std::endl;
}

int main ()
{
 asd::diagnostics::handler old_handler;

 // Install my own handler
 old_handler = asd::diagnostics::set_trace(my_tracehandler);

 // Do stuff
 // ...

 // Re-install old handler
 asd::diagnostics::set_trace(old_handler);

 return 0;
}

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/code_integration/cpp/cpp_tracing [08/05/2014 13:40:26]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

System failure in C++: content and customization

A generated ASD component can end up in an illegal state when the implementation of one of its handwritten foreign components
that is not compliant with its interface specification sends events to ASD components. For example, a user interface triggers an API
call that is not expected (i.e. specified as illegal in the corresponding state in the interface model) or a handwritten component used
by an ASD component triggers a notification that is not expected (i.e. specified as illegal in the corresponding state in thein the
design model).

Because the ASD components might be in an unexpected (illegal) state, the correctness of further execution is no longer
guaranteed and default behaviour in ASD is then termination of the application. In ASD an illegal handler is responsible for
terminating of the application: in C++ this is done by a call to std::abort().

The redefinition/customization of the illegal handler and its set up is similar to customizing and setting up a custom trace handler.
Note: the function used to install the illegal trace handler is: asd::diagnostics::set_illegal.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/code_integration/cpp/cpp_error [08/05/2014 13:40:30]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

The ASD Runtime for C#

The following files make up the ASD Runtime package for C#

File Name Description

Channels.cs A set of ASD dedicated interfaces, currently for Single-
threaded execution model

Singlethreaded.cs Interface and implementation of Single-threaded
execution model

MultiThreaded.cs Interface and implementation of Multi-threaded
execution model

Diagnostics.cs Interface and default implementation of the diagnostics
tracing and illegal handlers

DataVariable.cs Utility for data variables

PassbyValue.cs Utility to guarantee pass by value semantics for
parameter passing

Ucv.cs Utility for used service reference operators

The C# ASD Runtime files support the generated ASD C# code and provide an interface to handwritten code. The sections of the C#
ASD Runtime files that support ASD generated code have a specific format and may NOT be edited and the respective files should
NOT be included in any handwritten code. These sections in the files are prefaced by "namespace asd_<#>" where <#> is a specific
build version number. Example: namespace asd_31362.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_gu...f.aspx/9.2.7/code_integration/csharp/csharp_runtime [08/05/2014 13:40:34]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Parameter definition and parameter passing in C#

The declaration of parameters and how they are passed on as arguments in an ASD design model is described in the user manual.
This section describes the language specific details for C#. Foreign code that interfaces with the ASD generated code must adhere
to the semantics as defined here.

The type of a parameter can be any C# value base type or reference type. There are no type checks for parameters. It is your job
to ensure that the specified types are correct. For example, all parameters that are used with a certain data variable must have
the same type. Errors caused by wrong type specifications appear as compilation problems when you attempt to compile the
generated code in your development environment. In case you specified parameters with a user defined type, you have to ensure
that the respective type definition is accessible from within the generated code.

Parameter passing in C#
For [in] parameters the following holds:

● All value type parameters are passed by value. All reference type parameters are passed by reference.

● All parameters are immutable. All ASD generated code complies with this assumption. You are required to ensure that all
user components also comply.

● The parameters of notification events are copied to avoid common data-racing issues that can occur in Multi-threaded
environments. Their types must therefore be copyable.

For [out] and [inout] parameters the following holds:

● All [out] parameters are passed as C# "out" parameters and all [inout] parameters are passed as C# "ref" parameters.

● The ASD:Suite requires that the first use of an [out] parameter of an application call event used as trigger is as an [out] parameter of
an application call event used in a sequence of actions. Subsequent uses of the respective parameter can be as [out] or
[inout] parameter of an application call event used in a sequence of actions.

● If the first use of an undecorated (i.e. no storage specifier attached) parameter name within a rule case is as an [out] parameter of
an application call event used in a sequence of actions, a local variable of the same name is introduced.

● The ASD:Suite ensures that all [out] parameters are guaranteed to have a type-specific default value assigned to them (using the
C# default operator) when this is not done in the ASD model. Assigning "default" to references does not create a default
constructed object of the type but instead assigns "null" to the reference.

● The ASD:Suite assumes that "null" can be passed as any in, out or inout parameter and generates code accordingly. All
handwritten components interfacing with ASD components must also assume this.

● All [inout] arguments must be initialised (i.e. they must have a pre-existing value).

For the data variables and parameters of a notification event, the following holds:

● By default all parameters and data variables be of a value type or user defined type which is cloneable and supports the C#
extension mechanism. Storing and retrieving reference types to and from the data variables is performed by cloning the objects.
The value types are copied by value. The value retrieved from a data variable which has never been assigned a value will be the
type's C# default value. For all reference types this is "null"; for all value types it is 0.

● The default behaviour can be overridden with the "No Parameter Cloning" option. When this option is enabled, data variables
and parameters in the event queue will be assigned by reference instead of the default cloning behaviour.

● The type of an data variable or an in parameter of a notification event must be a value type or a cloneable reference type. unless the
no parameter cloning option is enabled. A cloneable reference type is one which has all of the following properties:

�❍ It must inherit from the "Icloneable" interface.
�❍ It must provide an implementation for the "Clone" method. The generated C# code uses the C# extension mechanism to provide a

"PassByValue" implementation for all value types and reference types. For reference types, this is implemented in terms of calling
the "Clone" method. For value types, this simply returns the value.

The ASD generated C# code will not dereference "null" references in the following cases:

● When using an [in] parameter in an application call event, or notification event, used as trigger.

● When using an [in] parameter in an application call event, or notification event, used in a sequence of actions.

● When receiving an out value from an application call event used in a sequence of actions.

● When storing to a data variable.

● When retrieving from a data variable which has not been assigned a value and is therefore a "null" reference.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_g...spx/9.2.7/code_integration/csharp/csharp_parameter [08/05/2014 13:40:38]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/parameters/parameters_intro
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/parameters/data_variables
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Component integration in C#

This section describes how handwritten client components and/or handwritten used components can be made to work with the
ASD generated components. The best way to go about this is to make use of the stub generator that is present in the ASD:
Suite ModelBuilder. The paragraphs below describe how to use the stub generator effectively to quickly generate code for
respecively the handwritten client component(s) and handwritten used component(s). In addition this section also described
how component creation works with construction parameters

Stub generation for calling components
To generate code for a handwritten client component, the following steps should be carried out:

1. Open the respective ASD interface model in the ASD:Suite ModelBuilder.

2. Start stub generator by right-clicking the interface model in the Model Explorer window or by selecting it in the Code Generator menu.

3. Select the language (C# in this case) as well as the version.

4. Select the "Client Stub" radio button and fill in the following options:
�❍ Fill in the name of the stub component to be generated in the construction parameter field. This name is the name of the calling

component that is created for you including all queue plumbing, notification registration, etc.
�❍ Fill in the name of the used component that is to be referred in the construction parameter field. This name should be the same as the

name of the construction parameter in those ASD design models where this ASD interface model is referred to as a used service.
Tip: Load the design model that uses the interface model for which you want to generate a stub. Select the interface model and
right-click it; the ModelBuilder has now filled in the name of the used component for you as it matches the name of the
construction parameter as found in the service references tab.

5. Select the output path where the generated stub should go to.

6. If desired, select "Save Settings" to remember these settings for a next time that stub code needs to be generated.

7. Finally, press "OK" to start the stub generation after which the files are generated. You need to remove the "_tmpl" from the
file extension after which the files are ready for use. When you already have generated stub code before, you can use a merge tool
to compare and merge the generated stub code.

The generated stub code for the client component for C# can be found here.

Stub generation for used components
To generate code for a handwritten used component, the following steps should be carried out:

1. Open the respective ASD interface model in the ASD:Suite ModelBuilder.

2. Start stub generator by right-clicking the interface model in the Model Explorer window or by selecting it in the Code Generator menu.

3. Select the language (C# in this case) as well as the version.

4. Select the "Used Component Stub" radio button and fill in the following options:
�❍ Fill in the name of the component to be generated in the construction parameter field. Note that this name should be the same as

the name of the construction parameter in those ASD design models where this ASD interface model is referred to as a used service.
�❍ Select the component type in the dropdown menu.
�❍ Select "Generate debug info" if you want trace statement to be included in your stub code.
�❍ Select "Generate synchronization primitives" if you want your functions to contain mutexes in order to be thread-safe. This is

typically not needed in the Single-threaded model. In the Multi-threaded this can be needed when the stub has multiple clients
and contains, for example, data that requires thread-safe access.

5. Select the output path where the generated stub should go to.

6. If desired, select "Save Settings" to remember these settings for a next time that stub code needs to be generated.

7. Finally, press "OK" to start the stub generation after which the files are generated. You need to remove the "_tmpl" from the
file extension after which the files are ready for use. When you already have generated stub code before, you can use a merge tool
to compare and merge the generated stub code.

The generated stub code for the used component for C# can be found here.

Component creation using component construction parameters
The typical use-cases for designing ASD components using component construction parameters are systems in which it is undesirable
or impossible at design time to specify which implementations will fulfil the dependencies or when the design relies on multi-
client interfaces on non-singleton components, i.e. construction-time diversity or shared multiple:

● Construction-time diversity can be used when the choice between different implementations of components (or sub-systems)
depends on system configuration and can be resolved before ASD components are instantiated. For example, the implementation of
a protocol handler will be instantiated to match system configuration settings specifying which communication protocol should be
used or which camera driver implementation is selected to match the actual camera hardware detected.

● Multiple shared instances of an ASD component can exist in a programs' address space if it has component type Multiple. When
two different component instances need to use the same instance of a used service that used service has a multi-client
interface. Component construction parameters should be used to bind the different client components to the shared used
service instance when the used service implementation cannot be made Singleton.

Note: See "Specifying the component type" for details about component types, Singleton or Multiple.

When you define construction parameters in the Model Properties of a design model, they end up in the signature of the GetInstance
() method. You can read more about construction parameters in "Defining construction parameters".

Construction parameter GetInstance parameter
[in] myparameter: string string myparameter
[in] myparameter: service(Sensor) SensorInterface myparameter
[in] myparameter: service[](Sensor) List<SensorInterface> myparameter

Component instance life-time is controlled by the number of references to the instance. Each dependent component instance has
a reference to each injected dependency instance. The handwritten client code responsible for building the instance hierarchy
using construction parameters also holds a reference to each instance. Control over instance life-time is effectively passed
to components to which the instance was injected when the builder releases its reference. The builder maintains in control of
instance life-time when the builder keeps its reference.

The code generated for "Singleton" and "Multiple" ASD components using construction parameters is identical. The handwritten

http://community.verum.com/documentation/runti...9.2.7/code_integration/csharp/csharp_component (1 of 2) [08/05/2014 13:40:42]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/generate_stub
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/construction_parameters/default
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/construction_parameters/default
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/create_dm/service_reference
http://community.verum.com/documentation/runtime_guide.aspx/9.2.7/code_integration/csharp/csharp_clientstub_example
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/generate_stub
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/construction_parameters/default
http://community.verum.com/documentation/runtime_guide.aspx/9.2.7/code_integration/csharp/csharp_usedstub_example
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/component_type
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/construction_parameters

ASD Runtime Guide

client building the instance hierarchy should call <component>::ReleaseInstance() on each singleton component it instantiates
when the singleton components are generated following the regular ASD construction mechanism.

Thus, the builder is responsible for the life-time of all singleton instances in the instance hierarchy.

Justification: <component>::ReleaseInstance() is not called on dependencies of components using construction parameters.
A component using construction parameters knows only the dependency interfaces. Consequently it cannot call the ReleaseInstance
() associated with a specific implementation of that interface.

Note that the need for use of the singleton pattern is greatly reduced when construction parameters are used to facilitate the use
of multi-client interfaces.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runti...9.2.7/code_integration/csharp/csharp_component (2 of 2) [08/05/2014 13:40:42]

http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Supported compilers and execution platforms for C#

The C# source code generated using the ASD:Suite is ECMA (European Computer Manufacturers Association) compliant C#.

The supported compilers must be able to compile and build C# code conforming to the C# 3.0 language specification.

Therefore, the following compilers are supported: Microsoft Visual Studio 2008 and 2010.

Note: Build and execution of C# code generated using the ASD:Suite requires a Windows .NET 2.0 compatible runtime.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_gu..._pdf.aspx/9.2.7/code_integration/csharp/csharp_osal [08/05/2014 13:40:45]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Trace outputs in C#: content and customization

In C#, the default .NET System.Diagnostics.Trace facility is used to allow redirection of trace statements to file, standard out, or
any other output device.

The default implementation retrieves the name of the calling function, the file and the line number of where the trace statement
is executed by making use of the .NET library.

The following code snippet is an example of trace handler customization:

public void traceHandler (diagnostics.info i)
{
 if (i.type == asd.diagnostics.type.illegal)
 {
 MessageBox.Show(
 "Program termination due to illegal event:\n"
 + "\n"
 + " EVENT:\t\t\"" + i.channel + "." + i.stimulus + "\"\n"
 + " STATE:\t\t\"" + i.state + "\"\n"
 + " COMPONENT:\t\""+ i.component + "\"\n"
 + "\n"
 + "Has the design been verified using the ASD:Suite?",
 "ASSERTION FAILURE",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error
);
 Application.Exit();
 }
 else
 {
 logWindow
 .showInfo ((i.type == asd.diagnostics.type. enter ? "-->"
 : "<--")
 + " "
 + i.component
 + (i.state == "" ? " Constructor"
 : "." + i.state + "." + i.channel + "." + i.stimulus)
 + Environment.NewLine);
 }
}

where logWindow is a Form defined as follows:

private class LogWindow : Form
{
 private TextBox textBox = null;

 public LogWindow(String title, int width, int height)
 {
 this.Text = title;
 this.ClientSize = new System.Drawing.Size(width, height);
 this.textBox = new TextBox();
 this.textBox.Multiline = true;
 this.textBox.ScrollBars = ScrollBars.Vertical;
 this.textBox.Dock = DockStyle.Fill;
 this.textBox.ReadOnly = true;
 this.Controls.Add (this.textBox);
 this.Show();
 }

 public void showInfo(String data)
 {
 textBox.AppendText(data);
 }
}

Use the following construction to install the customised trace handler:

asd.diagnostics.set_trace(this.traceHandler);

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_gu...f.aspx/9.2.7/code_integration/csharp/csharp_tracing [08/05/2014 13:40:49]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

System failure in C#: content and customization

A generated ASD component can end up in an illegal state when the implementation of one of its handwritten foreign components
that is not compliant with its interface specification sends events to ASD components. For example, a user interface triggers an API
call that is not expected (i.e. specified as illegal in the corresponding state in the interface model) or a handwritten component used
by an ASD component triggers a notification that is not expected (i.e. specified as illegal in the corresponding state in thein the
design model).

Because the ASD components might be in an unexpected (illegal) state, the correctness of further execution is no longer
guaranteed and default behaviour in ASD is then termination of the application. In ASD an illegal handler is responsible for
terminating of the application: in C# this is done by a call to System.Diagnostics.Process.GetCurrentProcess().Kill().

The redefinition/customization of the illegal handler and its set up is similar to customizing and setting up a custom trace handler.
Note: the function used to install the illegal trace handler is: asd.diagnostics.set_illegal().

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_gu...pdf.aspx/9.2.7/code_integration/csharp/csharp_error [08/05/2014 13:40:53]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

The ASD Runtime for Java

The following files in the ASD Runtime package for Java may be used by the customer in the handwritten code. These files may not
be changed by the customer. They are located in the Java runtime package under namespaces like com.verum.asd.runtime.*, where
* can be "channels", "diagnostics" and "parameters".

File Name Package Description

SingleThreaded.java

ISingleThreaded.java

channels A set of ASD dedicated
interfaces for the Single-
threaded execution model

Diagnostics.java
DiagnosticsDefaultTraceHandler.java
DiagnosticsInfo.java
DiagnosticsTraceListener.java

diagnostics Interface and default
implementation of the
diagnostics tracing and
illegal handlers

BooleanHolder.java
ByteHolder.java
CharHolder.java
DoubleHolder.java
FloatHolder.java
Holder.java
IntHolder.java
LongHolder.java
ObjectHolder.java
ShortHolder.java

parameters Utility classes for in, out
and in/out parameter
passing and data variables

The following files in the ASD Runtime package for Java are for ASD internal use only. These files may NOT be changed or included by
the customer. They are located in the Java runtime package under namespace "com.verum.asd.runtime_<revisionID>", where
"revisionID" is a number.

Package File Name Description

SingleThreadedContext.java
SingleThreadedContextNoDpc.
java

Interface and implementation of Single-threaded
execution model

MultiThreadedContext.java
MultiThreadedContextNoDpc.
java
MultiThreadedDpc.java
IFunctor.java

Interface and implementation of Multi-threaded
execution model

ITransfer.java
PassByValue.java

Utility to guarantee pass by value semantics for
parameter passing

VariableUCV.java
FixedUCV.java
NullUCV.java

Support for used service reference operators

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/code_integration/java/java_runtime [08/05/2014 13:40:57]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Parameter definition and parameter passing in Java

The declaration of parameters and how they are passed on as arguments in an ASD design model is described in the user manual.
This section describes the language specific details for Java. Foreign code that interfaces with the ASD generated code must adhere
to the semantics as defined here.

The type of a parameter can be any Java value base type or reference type. There are no type checks for parameters. It is your job
to ensure that the specified types are correct. For example, all parameters that are used with a certain data variable must have
the same type. Errors caused by wrong type specifications appear as compilation problems when you attempt to compile the
generated code in your development environment. In case you specified parameters with a user defined type, you have to ensure
that the respective type definition is accessible from within the generated code.

Parameter passing in Java
For [in] parameters the following holds:

● The type of an [in] parameter can be any valid Java primitive type (boolean, char, int, long, byte, short, float, double) or a class. All
primitive type [in] parameters are passed by value and all [in] parameters that have a class as type are passed by reference. Note that
array types "int[]", "MyType[]", etc. are not supported. Use java.util.ArrayList instead.

For [out] and [inout] parameters the following holds:

● All [out] parameters have "out" semantics and pre-existing values can not be assumed or used. The ASD:Suite uses patterns that
assume that pre-existing values of [out] parameters can not be assumed by you as a user of the ASD:Suite. Specifically, it is assumed
that handwritten components always avoid partial updates (e.g. assigning values to some but not all data members of an output
object on the assumption that the others have valid values) and never use pre-existing values as input.

● The ASD:Suite requires that the first use of an [out] parameter of an application call event used as trigger is as an [out] parameter of
an application call event used in a sequence of actions. Subsequent uses of the respective parameter can be as [in], [out] or [inout]
parameter of an application call event used in a sequence of actions.

● If the first use of an undecorated (i.e. no storage specifier attached) parameter name within a rule case is as an [out] parameter of an
application call event used in a sequence of actions, a local variable of the same name is introduced.

● All [inout] arguments must be initialised (i.e. they must have a pre-existing value).

● To model [out] and [inout] parameters, the ASD Java runtime contains the classes BooleanHolder, CharHolder, IntHolder, LongHolder,
ByteHolder, ShortHolder, FloatHolder and DoubleHolder to model primitive type [out]/[inout] parameters. The generic type
ObjectHolder<T> is used to model [out]/[inout] parameters that have a class as type. Each of the "Holder" classes has a "get" and a
"set" method for getting/setting the value of the [out]/[inout] parameter.

For the data variables and parameters of a notification event, the following holds:

● All [in] parameters of a notification event must be of a primitive type or have a "clonable" (see below) class as type.

● The parameters that are transferred to and/or from data variables should be either of a primitive type or have a "cloneable" (see
below) class as type. Furthermore, these types should have a default (empty) constructor that is used to initialise the data variables at
construction time.

● There are no type checks for parameters. It is your job to ensure that the specified types are correct. For example, all parameters that
are used with a certain data variable should have the same type. Errors caused by wrong type specifications appear as compilation
problems when you attempt to compile the generated code in your development environment.

● The copying of parameters is performed using the standard Java "clone" method. A clonable type should implement the standard Java
interface "Cloneable". For a user-defined type MyType, Verum recommends to implement its clone method by means of a protected
copy constructor:
public class MyType implements Cloneable {

protected MyType(MyType myType) {
// Code performing a (preferably deep) copy
}
public MyType clone() {
return new MyType(this);
}

}
● Note: Use the "No Parameter Cloning" option in the Code Generator section of the Model Properties dialog to be able to pass

parameters by reference.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_gu...pdf.aspx/9.2.7/code_integration/java/java_parameter [08/05/2014 13:41:00]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/parameters/parameters_intro
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/parameters/data_variables
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Component integration in Java

This section describes how handwritten client components and/or handwritten used components can be made to work with the
ASD generated components. The best way to go about this is to make use of the stub generator that is present in the ASD:
Suite ModelBuilder. The paragraphs below describe how to use the stub generator effectively to quickly generate code for
respecively the handwritten client component(s) and handwritten used component(s). In addition this section also described
how component creation works with construction parameters

Stub generation for calling components
To generate code for a handwritten client component, the following steps should be carried out:

1. Open the respective ASD interface model in the ASD:Suite ModelBuilder.

2. Start stub generator by right-clicking the interface model in the Model Explorer window or by selecting it in the Code Generator menu.

3. Select the language (Java in this case) as well as the version.

4. Select the "Client Stub" radio button and fill in the following options:
�❍ Fill in the name of the stub component to be generated in the construction parameter field. This name is the name of the calling

component that is created for you including all queue plumbing, notification registration, etc.
�❍ Fill in the name of the used component that is to be referred in the construction parameter field. This name should be the same as the

name of the construction parameter in those ASD design models where this ASD interface model is referred to as a used service.
Tip: Load the design model that uses the interface model for which you want to generate a stub. Select the interface model and
right-click it; the ModelBuilder has now filled in the name of the used component for you as it matches the name of the
construction parameter as found in the service references tab.

5. Select the output path where the generated stub should go to.

6. If desired, select "Save Settings" to remember these settings for a next time that stub code needs to be generated.

7. Finally, press "OK" to start the stub generation after which the files are generated. You need to remove the "_tmpl" from the
file extension after which the files are ready for use. When you already have generated stub code before, you can use a merge tool
to compare and merge the generated stub code.

The generated stub code for the client component for Java can be found here.

Stub generation for used components
To generate code for a handwritten used component, the following steps should be carried out:

1. Open the respective ASD interface model in the ASD:Suite ModelBuilder.

2. Start stub generator by right-clicking the interface model in the Model Explorer window or by selecting it in the Code Generator menu.

3. Select the language (Java in this case) as well as the version.

4. Select the "Used Component Stub" radio button and fill in the following options:
�❍ Fill in the name of the component to be generated in the construction parameter field. Note that this name should be the same as

the name of the construction parameter in those ASD design models where this ASD interface model is referred to as a used service.
�❍ Select the component type in the dropdown menu.
�❍ Select "Generate debug info" if you want trace statement to be included in your stub code.
�❍ Select "Generate synchronization primitives" if you want your functions to contain mutexes in order to be thread-safe. This is

typically not needed in the Single-threaded model. In the Multi-threaded this can be needed when the stub has multiple clients
and contains, for example, data that requires thread-safe access.

5. Select the output path where the generated stub should go to.

6. If desired, select "Save Settings" to remember these settings for a next time that stub code needs to be generated.

7. Finally, press "OK" to start the stub generation after which the files are generated. You need to remove the "_tmpl" from the
file extension after which the files are ready for use. When you already have generated stub code before, you can use a merge tool
to compare and merge the generated stub code.

The generated stub code for the used component for Java can be found here.

Component creation using component construction parameters
The typical use-cases for designing ASD components using component construction parameters are systems in which it is undesirable
or impossible at design time to specify which implementations will fulfil the dependencies or when the design relies on multi-
client interfaces on non-singleton components, i.e. construction-time diversity or shared multiple:

● Construction-time diversity can be used when the choice between different implementations of components (or sub-systems)
depends on system configuration and can be resolved before ASD components are instantiated. For example, the implementation of
a protocol handler will be instantiated to match system configuration settings specifying which communication protocol should be
used or which camera driver implementation is selected to match the actual camera hardware detected.

● Multiple shared instances of an ASD component can exist in a programs' address space if it has component type Multiple. When
two different component instances need to use the same instance of a used service that used service has a multi-client
interface. Component construction parameters should be used to bind the different client components to the shared used
service instance when the used service implementation cannot be made Singleton.

Note: See "Specifying the component type" for details about component types, Singleton or Multiple.

When you define construction parameters in the Model Properties of a design model, they end up in the signature of the GetInstance
() method. You can read more about construction parameters in "Defining construction parameters".

Construction parameter GetInstance parameter
[in] myparameter: String String myparameter
[in] myparameter: service(Sensor) final SensorInterface myparameter
[in] myparameter: service[](Sensor) final java.util.List<SensorInterface> myparameter

Component instance life-time is controlled by the number of references to the instance. Each dependent component instance has
a reference to each injected dependency instance. The handwritten client code responsible for building the instance hierarchy
using construction parameters also holds a reference to each instance. Control over instance life-time is effectively passed
to components to which the instance was injected when the builder releases its reference. The builder maintains in control of
instance life-time when the builder keeps its reference.

The code generated for "Singleton" and "Multiple" ASD components using construction parameters is identical. The handwritten

http://community.verum.com/documentation/runti...spx/9.2.7/code_integration/java/java_component (1 of 2) [08/05/2014 13:41:05]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/generate_stub
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/construction_parameters/default
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/construction_parameters/default
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/create_dm/service_reference
http://community.verum.com/documentation/runtime_guide.aspx/9.2.7/code_integration/java/java_clientstub_example
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/generate_stub
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/construction_parameters/default
http://community.verum.com/documentation/runtime_guide.aspx/9.2.7/code_integration/java/java_usedstub_example
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/component_type
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/construction_parameters

ASD Runtime Guide

client building the instance hierarchy should call <component>.releaseInstance() on each singleton component it instantiates when
the singleton components are generated following the regular ASD construction mechanism.

Thus, the builder is responsible for the life-time of all singleton instances in the instance hierarchy.

Justification: <component>.releaseInstance() is not called on dependencies of components using construction parameters.
A component using construction parameters knows only the dependency interfaces. Consequently it cannot call the ReleaseInstance
() associated with a specific implementation of that interface.

Note that the need for use of the singleton pattern is greatly reduced when construction parameters are used to facilitate the use
of multi-client interfaces.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runti...spx/9.2.7/code_integration/java/java_component (2 of 2) [08/05/2014 13:41:05]

http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Supported compilers and execution platforms for Java

The Java source code generated using the ASD:Suite is JDK 6.0 compatible.

The Eclipse development environment or the NetBeans IDE can be used for building and running the generated Java source code.

The ASD:Suite supports JRE 1.6 and only needs Java SE (Standard Edition).

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/code_integration/java/java_osal [08/05/2014 13:41:08]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Trace outputs in Java: content and customization

In Java by default the DiagnosticsDefaultTraceHandle is used. This class is part of the ASD Runtime for Java and contains a println
to System.out.

To obtain a different trace output you can write a class that implements the DiagnosticsTraceListener class and write your own
traceHandler method.

The following code snippet is an example of traceHandler customization:

public void traceHandler(DiagnosticsInfo i) {
 if (i.getType() == DiagnosticsInfo.DirType.illegal) {
 JOptionPane.showMessageDialog(contentPane,
 "Program termination due to illegal event:\n\n"
 + "<html><table>" + "<tr>"
 + "<td>EVENT:</td><td>\"" + i.getChannel() + "."
 + i.getStimulus() + "\"</td>" + "</tr>" + "<tr>"
 + "<td>STATE:</td><td>\"" + i.getState()
 + "\"</td>" + "</tr>" + "<tr>"
 + "<td>COMPONENT:</td><td>\"" + i.getComponent()
 + "\"</td>" + "</tr>" + "</table><html>" + "\n\n"
 + "Has the design been verified using the ASD:Suite?",
 "ASSERTION FAILURE", JOptionPane.ERROR_MESSAGE);
 System.exit(1);
 } else {
 logWindow
 .showInfo((i.getType() == DiagnosticsInfo.DirType.enter ? "-->"
 : "<--")
 + " "
 + i.getComponent()
 + (i.getChannel() == "" ? " Constructor" : "."
 + i.getState() + "." + i.getChannel() + "."
 + i.getStimulus()) + "\n");
 }
}

where logWindow is a frame defined as follows:

class LogWindow extends JFrame {
 private static final long serialVersionUID = 1L;
 private JTextArea textArea = null;
 private JScrollPane pane = null;

 public LogWindow(String title, int width, int height) {
 super(title);
 setSize(width, height);
 textArea = new JTextArea();
 textArea.setEditable(false);
 pane = new JScrollPane(textArea);
 getContentPane().add(pane);
 setVisible(true);
 }

 public void showInfo(String data) {
 textArea.append(data);
 textArea.setCaretPosition(textArea.getText().length());
 this.getContentPane().validate();
 }
}

Note: use the following construction to install the customised trace handler:

Diagnostics.setTraceHandler(this);

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/code_integration/java/java_tracing [08/05/2014 13:41:12]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

System failure in Java: content and customization

System failure leads to the termination of the application. In ASD an illegal handler is responsible for terminating the the application
in an application specific correct and safe way. If it fails to do so, it will be by returning or by throwing an exception.

Because the ASD components might by in an unexpected (illegal) state, the correctness of further execution is no longer
guaranteed. Generated ASD components might end up in an illegal state when handwritten clients or handwritten foreign
components send events to ASD components that are not compliant with the interface specification.

This default behaviour can be adapted to your needs with the following requirement on the illegal handler: it should not return to
the caller.

In Java the process is halted by an assert(false).

The redefinition/customization of the illegal handler and its set up is similar to customizing and setting up a custom trace handler.
Note: the function used to install the illegal trace handler is
Diagnostics.setIllegalHandler().

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/code_integration/java/java_error [08/05/2014 13:41:16]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

C versus TinyC

The generated C code essentially follows the same structure as the truly object-oriented programming languages, such as C++, C#, and
Java: the generated C code implements the interfaces using v-tables and each method call of an object has as a first argument a
pointer to a struct reflecting the "this" pointer for a component instance.

However, in extreme resource constrained environments multiple component instances are hardly used. By using singleton
components the internal data of a component can become a local variable of the C source file that implements this component.
Consequently, the "this" pointer is no longer needed as all local variables have become "static" within this C source file. Further, if no
dynamic bindings are used 'glueing' the components together meaning that all bindings are known at design time (including the
bindings for the callbacks), then the linker can be used to resolve and make the bindings.

The implementation of these two optimisations has led to the introduction of the TinyC code generator which is aimed at extreme
resource constrained targets such as 8051 microcontrollers. These optimisations are at the expense of restricting the following
features in TinyC:

● TinyC does not support the Multi-threaded execution model; it only supports the Single-threaded execution model. Therefore,
all limitations of the Single-threaded model apply whenever TinyC is used.

● TinyC does not support the component type being set to multiple. It only supports the component type set to singleton.

● TinyC does not support the use of state variables of type used service reference.

● TinyC does not support the use of service reference construction parameters.

● TinyC does not support the use of service references with cardinality > 1.

All features as present in ASD are fully supported in C.

Note that the generated C code cannot be mixed with the generated TinyC code. From an ASD point of view, C and TinyC are regarded
as two different languages. Also note that both C and TinyC differ from the other supported programming languages in one aspect:
the generated code is completely static from a memory management point of view. They both comply with MISRA C coding standard.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/code_integration/c/c_versus_tinyC [08/05/2014 13:41:20]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/create_dm/create_design_model
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/create_dm/usr_behaviour
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/construction_parameters/reference
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/create_dm/service_reference
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

The ASD Runtime for C and TinyC

The ASD Runtime for C and TinyC is the same as there are no essential differences between the two languages. It provides
functionality that is shared and used by all generated ASD components such as threading, various utility functions and so on. The ASD
Runtime provides this functionality through a number of interfaces that is described in more detail in the Doxygen documentation.

The ASD Runtime is divided in four modules:

1. ASD basic types module (asd);

2. ASD Rte module (rte);

3. ASD Diagnostics module (diagnostics);

4. ASD OSAL module (OSAL);

The ASD basic types module defines general types and functions for ASD. ASD components only use types that are defined in this
module and no C built-in types are used. Exceptions to this rule are parameter types. User specific parameter types are defined in
header files specified in the model. All types in ASD must have an associated initialiser macro. These macros are used for the
initialisation of an ASD component. Not providing an initialiser for a user defined type will result in a compiler error.

The Rte module implements the actual functionality of the runtime environment. This module should not be changed in any way. The
reason for this is that it is closely aligned with the execution semantics of ASD on which the (formal) verification is based. Changing the
behaviour of the Rte module can break the equivalence between the (formal) verification of the ASD models on one hand and the
execution of the generated code on the other. NOTE THAT CORRECT BEHAVIOUR IS NOT GUARANTEED ANYMORE ONCE THE RTE
MODULE HAS BEEN CHANGED IN ANY WAY.

The Diagnostic module implements a simple diagnostic facility in ASD. An ASD design model has a property to include trace statements
into the generated code. When this trace property is enabled, the code generator will emit entry and exit macros in the generated
code. The implementation of these macros can be changed for logging purposes only. Although the macros could change the
behaviour of the components because they are inserted into the ASD components, any side effects in the ASD components are not
allowed. An example of user-defined implementation is to have empty macro definitions or logging events to a specific logger module.

The ASD OSAL (operating system abstraction layer) module implements a wrapper to operating system calls. The runtime mainly uses
threading, synchronization, and time functionality from the operating system. The mapping to a specific operating system is
implemented in this module. When support is needed for a new operating system, this module needs to be re-implemented according
to the specification in this document. Again no side effects are allowed in the implementation of this module.

The ASD Runtime contains files that are specific for the Multi-threaded execution model and the Single-threaded execution model. It
also contains files that are common to both execution models. The following files make up the ASD Runtime package for both C and
TinyC:

File Name Module Description

asdDefConfig.h asd Configuration ASD
Runtime

asd.h asd General ASD types

asdImpl.h asd Interface of ASD types

asd.c asd Implementation of ASD
types

asdDbg.h diagnostics Diagnostics module

asdDbgImpl.c diagnostics Implementation of
Diagnostics module

asdDbgImpl.h diagnostics Interface of Diagnostics
module

asdOSAL.h OSAL Operating system
wrapper

asdOSALImpl.c OSAL Implementation of
operating system
wrapper

asdOSALImpl.h OSAL Interface of operating
system wrapper

asdRte.h rte Interface of ASD Runtime
(Common)

asdRteBuffer.c rte Implementation of ASD
Runtime (Multi-threaded)

asdRteBufFifo.c rte Implementation of ASD
Runtime (Common)

asdRteBroadcast.c rte Implementation of ASD
Runtime (Multi-threaded)

asdRteContextMT.c rte Implementation of ASD
Runtime (Multi-threaded)

asdRteDpcMT.c rte Implementation of ASD
Runtime (Multi-threaded)

http://community.verum.com/documentation/runtim...ide_pdf.aspx/9.2.7/code_integration/c/c_runtime (1 of 2) [08/05/2014 13:41:24]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/Files/runtime_doxygen/c_tinyc/9.2.3/html/index.html
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/referencing
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/tracing

ASD Runtime Guide

asdRteUcv.c rte Implementation of ASD
Runtime (Common)

asdRteISThreadInterface.h rte Interface of ASD Runtime
(Single-threaded)

asdRteContextSThread.c rte Implementation of ASD
Runtime (Single-
threaded)

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtim...ide_pdf.aspx/9.2.7/code_integration/c/c_runtime (2 of 2) [08/05/2014 13:41:24]

http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Parameter definition and parameter passing in C and TinyC

The declaration of parameters and how they are passed on as arguments in an ASD design model is described in the user manual.
This section describes the language specific details for C and TinyC. It also explains how to include data into your (hand-
written) components and how to ensure that this data is then properly initialised.

Parameter passing in C and TinyC
For [in] parameters in C and TinyC the following holds:

● An [in] parameter can be of any C type or user defined type. Note that the designer must ensure that such user defined types are
accessible (to the compiler) using the import/include field.

● An [in] parameter is always passed by value for all events. This implies that a copy of the argument is made. The C assignment
statement is used to perform the copy-action. The C assignment statement can make shallow copies, but making deep copies - also
copying referenced values - is not supported.

● An [in] parameter in the generated C are exactly as they have been specified in the ASD interface models. It is possible to declare them
as "const" in the ASD interface models. For example:

writeBuf ([in] buf:const char*, [in] c:const char) : void

In such case, the "const" is passed on the C/TinyC code generator and used accordingly. Note that there is no checking on correct
usage of const parameters in ASD which could lead to compiler errors.

● Pointers are allowed as [in] parameters, but the lifecycle management of the referenced values is not be managed by ASD.

For [out] and [inout] parameters in C and TinyC the following holds:

● An [out] or [inout] parameter can be of any C type or user defined type. Note that the designer must ensure that such user defined
types are accessible (to the compiler) using the import/include field.

● An [out] parameter has true out-semantics and pre-existing values are not available anymore. For handwritten components it is
assumed that no partial updates have been performed.

● All [out] and [inout] parameters are passed via pointer dereferencing. The only way to pass [out] or [inout] parameters in C is to pass a
pointer to a variable instead of passing the actual variable. Therefore the specified type "T" of an [out] or [inout] parameter will
become "T*" in the generated C code.

● The parameter type is - besides the addition of the pointer indirection - untouched. It is the responsibility of the designer that
parameter types are not const and the associated assignment to an [out] or [inout] parameter will not result in a compiler error.

For the data variables the following holds:

● Because data variables are being read and written to, the data variable type cannot be const.

● Data variables are being initialised to zero during construction of the component.

● Storing and retrieving the data variables takes place via the C assignment operator using the semantics as defined above.

How to include data into your components
It is possible to store data in your (handwritten) components, and it is best to use the stub-generator to generate the infrastructure
of the used component, after which it is trivial to include additional data.

The <component>ComponentImpl.h header file where <component> is the name of the component contains a separate
structure called <component>Data acting as a container for the component's data. This structure has a corresponding initialiser
macro called <COMPONENT>DATA_INITIALIZER where <COMPONENT> is the name of the component is in capital case. When
adding data, you must add the corresponding type and member to the aforementioned structure including the respective initialiser
to the aforementioned macro. When the data is of a user defined type, you have to provide the initialiser macro declaration in the
user specific include file, following the aforementioned naming convention. Omitting this initialiser macro can lead to compiler
errors on the component instantiation and initialisation.

Initially, it is assumed that such handwritten component contains no data, and this is achieved by commenting out the
following compiler directive: <COMPONENT>_HASIMPLSTRUCT where <COMPONENT> is the name of the component is in capital
case (also in the aforementioned header file). So to use data, it is necessary to uncomment this compiler directive.

An example of how to include data for C can be found here, whereas for TinyC it can be found here.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/code_integration/c/c_parameter [08/05/2014 13:41:28]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/parameters/parameters_intro
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/referencing
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/referencing
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/parameters/data_variables
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/referencing
http://community.verum.com/documentation/runtime_guide.aspx/9.2.7/code_integration/c/c_usedstub_example
http://community.verum.com/documentation/runtime_guide.aspx/9.2.7/code_integration/c/tinyc_usedstub_example
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Component integration in C and TinyC

This section describes how handwritten client components and/or handwritten used components can be made to work with the
ASD generated components. The best way to go about this is to make use of the stub generator that is present in the ASD:
Suite ModelBuilder. The paragraphs below describe how to use the stub generator effectively to quickly generate code for
respecively the handwritten client component(s) and handwritten used component(s). In addition this section also described
how component creation works with construction parameters

Stub generation for calling components
To generate code for a handwritten client component, the following steps should be carried out:

1. Open the respective ASD interface model in the ASD:Suite ModelBuilder.

2. Start stub generator by right-clicking the interface model in the Model Explorer window or by selecting it in the Code Generator menu.

3. Select the language (C or TinyC in this case) as well as the version.

4. Select the "Client Stub" radio button and fill in the following options:
�❍ Fill in the name of the stub component to be generated in the construction parameter field. This name is the name of the calling

component that is created for you including all queue plumbing, notification registration, etc.
�❍ Fill in the name of the used component that is to be referred in the construction parameter field. This name should be the same as the

name of the construction parameter in those ASD design models where this ASD interface model is referred to as a used service.
Tip: Load the design model that uses the interface model for which you want to generate a stub. Select the interface model and
right-click it; the ModelBuilder has now filled in the name of the used component for you as it matches the name of the
construction parameter as found in the service references tab.

5. Select the output path where the generated stub should go to.

6. If desired, select "Save Settings" to remember these settings for a next time that stub code needs to be generated.

7. Finally, press "OK" to start the stub generation after which the files are generated. You need to remove the "_tmpl" from the
file extension after which the files are ready for use. When you already have generated stub code before, you can use a merge tool
to compare and merge the generated stub code.

The generated stub code for the client component for C can be found here, whereas for TinyC it can be found here.

Stub generation for used components
To generate code for a handwritten used component, the following steps should be carried out:

1. Open the respective ASD interface model in the ASD:Suite ModelBuilder.

2. Start stub generator by right-clicking the interface model in the Model Explorer window or by selecting it in the Code Generator menu.

3. Select the language (C or TinyC in this case) as well as the version.

4. Select the "Used Component Stub" radio button and fill in the following options:
�❍ Fill in the name of the component to be generated in the construction parameter field. Note that this name should be the same as

the name of the construction parameter in those ASD design models where this ASD interface model is referred to as a used service.
�❍ Select the component type in the dropdown menu. Note that for TinyC only the type "singleton" is supported.
�❍ Make sure that the option "Generate proxy class for each interface" is deselected since this is not supported for C nor TinyC.
�❍ Select "Generate debug info" if you want trace statement to be included in your stub code.
�❍ Select "Generate synchronization primitives" if you want your functions to contain mutexes in order to be thread-safe. This is

typically not needed in the Single-threaded model. In the Multi-threaded this can be needed when the stub has multiple clients
and contains, for example, data that requires thread-safe access.

5. Select the output path where the generated stub should go to.

6. If desired, select "Save Settings" to remember these settings for a next time that stub code needs to be generated.

7. Finally, press "OK" to start the stub generation after which the files are generated. You need to remove the "_tmpl" from the
file extension after which the files are ready for use. When you already have generated stub code before, you can use a merge tool
to compare and merge the generated stub code.

The generated stub code for the used component for C can be found here, whereas for TinyC it can be found here.

Component creation using component construction parameters
The typical use-cases for designing ASD components using component construction parameters are systems in which it is undesirable
or impossible at design time to specify which implementations will fulfil the dependencies or when the design relies on multi-
client interfaces on non-singleton components, i.e. construction-time diversity or shared multiple:

● Construction-time diversity can be used when the choice between different implementations of components (or sub-systems)
depends on system configuration and can be resolved before ASD components are instantiated. For example, the implementation of
a protocol handler will be instantiated to match system configuration settings specifying which communication protocol should be
used or which camera driver implementation is selected to match the actual camera hardware detected.

● Multiple shared instances of an ASD component can exist in a programs' address space if it has component type Multiple. When
two different component instances need to use the same instance of a used service that used service has a multi-client
interface. Component construction parameters should be used to bind the different client components to the shared used
service instance when the used service implementation cannot be made Singleton.

Note: See "Specifying the component type" for details about component types, Singleton or Multiple.

When you define construction parameters in the Model Properties of a design model, they end up in the signature of the GetInstance
() method. You can read more about construction parameters in "Defining construction parameters".

Construction parameter GetInstance parameter
[in] myparameter: int int myparameter
[in] myparameter: service(Sensor) SensorInterface_Intf* myparameter
[in] myparameter: service[](Sensor) SensorInterface_Intf* myparameter[], asdUint myparameter_array_size

Component instance life-time is controlled by the number of references to the instance. Each dependent component instance has
a reference to each injected dependency instance. The handwritten client code responsible for building the instance hierarchy
using construction parameters also holds a reference to each instance. Control over instance life-time is effectively passed
to components to which the instance was injected when the builder releases its reference. The builder maintains in control of
instance life-time when the builder keeps its reference.

http://community.verum.com/documentation/runti..._pdf.aspx/9.2.7/code_integration/c/c_component (1 of 2) [08/05/2014 13:41:32]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/generate_stub
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/construction_parameters/default
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/construction_parameters/default
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/create_dm/service_reference
http://community.verum.com/documentation/runtime_guide.aspx/9.2.7/code_integration/c/c_clientstub_example
http://community.verum.com/documentation/runtime_guide.aspx/9.2.7/code_integration/c/tinyc_clientstub_example
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/generate_stub
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/construction_parameters/default
http://community.verum.com/documentation/runtime_guide.aspx/9.2.7/code_integration/c/c_usedstub_example
http://community.verum.com/documentation/runtime_guide.aspx/9.2.7/code_integration/c/tinyc_usedstub_example
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/component_type
http://community.verum.com/documentation/user_manual.aspx/9.2.7/codegeneration/prepare_code/construction_parameters

ASD Runtime Guide

The code generated for "Singleton" and "Multiple" ASD components using construction parameters is identical. The handwritten
client building the instance hierarchy should call <component>::ReleaseInstance() on each singleton component it instantiates
when the singleton components are generated following the regular ASD construction mechanism.

Thus, the builder is responsible for the life-time of all singleton instances in the instance hierarchy.

Justification: <component>::ReleaseInstance() is not called on dependencies of components using construction parameters.
A component using construction parameters knows only the dependency interfaces. Consequently it cannot call the ReleaseInstance
() associated with a specific implementation of that interface.

Note that the need for use of the singleton pattern is greatly reduced when construction parameters are used to facilitate the use
of multi-client interfaces.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runti..._pdf.aspx/9.2.7/code_integration/c/c_component (2 of 2) [08/05/2014 13:41:32]

http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Supported compilers and execution platforms for C and TinyC

These are the officially supported compilers for the C/TinyC source code generated using the ASD:Suite:

● Microsoft Visual Studio 2008

● gcc 4.3.2

Other compilers and/or versions of compilers are known to work as well but they are not part of the release suite that is used
to validate the generated code in combination with the ASD Runtime.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/code_integration/c/c_compilers [08/05/2014 13:41:36]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Custom OSAL support for C and TinyC

When needed, you can create a platform specific OSAL (Operating System Abstraction Layer). The OSAL module of the ASD
Runtime acts as a wrapper to the operating system calls and mainly consists of threading, synchronization, and timing functionality.
An implementation for POSIX is provided by default. There is also a Nullos implementation that is used for platforms without an
operating system.

After downloading the ASD runtime you can copy the provided POSIX or Nullos implementation files to a separate directory and
make the platform specific changes in the OSAL as needed for your operating system. The existing OSAL model containing the
POSIX and Nullos implementation should not be misused to change the modelled (runtime) behaviour. This breaks the equivalence
in behaviour between what is verified on one hand with the execution of the generated code using the ASD Runtime on the other.

Note: Any OSAL implementation need to adhere to the interface description that is specified in the Doxygen documentation.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/code_integration/c/c_osal [08/05/2014 13:41:39]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/Files/runtime_doxygen/c_tinyc/9.2.3/html/index.html
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Trace outputs in C and TinyC: content and customization

The Diagnostic module of the ASD runtime provides macros that are inserted in the generated code if the debug flag is turned on.

Currently there are three macros involved: ASDDBG_ENTRYTRACE, ASDDBG_EXITTRACE and ASDDBG_ASSERT. The default
implementation gathers function, file and line number.

The implementation of these macros can be changed in the platform specific OSAL.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/code_integration/c/c_tracing [08/05/2014 13:41:43]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

System failure in C and TinyC: content and customization

A generated ASD component can end up in an illegal state when the implementation of one of its handwritten foreign components
that is not compliant with its interface specification sends events to ASD components. For example, a user interface triggers an API
call that is not expected (i.e. specified as illegal in the corresponding state in the interface model) or a handwritten component used
by an ASD component triggers a notification that is not expected (i.e. specified as illegal in the corresponding state in thein the
design model).

Because the ASD components might be in an unexpected (illegal) state, the correctness of further execution is no longer guaranteed
and default behaviour in ASD is then termination of the application. In ASD an illegal handler is responsible for terminating of the
application: in both C and TinyC this is done by a call to asd_illegal() (asd.h). The asd_illegal() itself cannot be re-implemented by a
platform specific version. The asd_illegal() function is never allowed to return such that execution can continue.

This default behaviour can be adapted to your needs with the following requirement on the illegal handler: it should never return to
the caller.

Carry out the following steps to create your own illegal handler:
1. Copy the file "asdDefConfig.h" to a new file named "asdConfig.h".

2. Edit the file "asdConfig.h" and add the compile directive:
#define ASDIMPL_ILLEGAL(msg)

3. Provide the corresponding body for the directive, such as, for example:
#define ASDIMPL_ILLEGAL(msg) {for(;;);}

4. Re-compile with the option "-DASD_HAVE_CONFIG_H".

The user can also register an illegal callback function via the asd_register_illegalCB() function. This function is called by the default
asd_illegal() implementation such that the client is informed about the erroneous situation and can take action like resetting the
system, informing the user, or make sure that hardware components are set in a secure condition.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/code_integration/c/c_error [08/05/2014 13:41:47]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

RAM and ROM footprint optimizations

In some cases it can be possible that the generated code does not fit into RAM and/or ROM. This section presents some suggestions
to reduce the footprint even further in the generated C and TinyC code:

1. Switch off trace statements.
By default the ASD components are generated with debug information enabled. In the generated C and TinyC code this implies
that macro's are present and inserted resulting in trace output being generated during run-time execution. These macro's can
be switched by either simply not generating them anymore or by disabling them using a compile-time directive. Carry out the
following steps to disable this compile-time directive:

�❍ Copy the file "asdDefConfig.h" to a new file named "asdConfig.h".
�❍ Edit the file "asdConfig.h" and comment out the compile directive:
#define ASD_ENABLE_DEBUG

�❍ Re-compile with the option "-DASD_HAVE_CONFIG_H".

2. Switch off assert on re-entrancy check.
An application interface function can only exit the component after a return event (void reply or valued return) has occurred. In case
of the Multi-threaded execution model, the application interface thread can suspend until the dpc thread issues a return event. In
case of the Single-threaded execution model, the return event is always issued on the same execution thread. This behaviour
is checked by the model checker. Therefore, a return event has always been issued before the execution thread finishes the
application interface function call. By default, the ASD Runtime will assert on this missing return event (i.e. another
application interface function tries to re-enter the component whilst the previous function has not returned yet). This assert is to
aid users to check correct behaviour while developing/testing their applications. This assert can be optimized out by enabling a
compile-time directive. Carry out the following steps to enable this compile-time directive:

�❍ Copy the file "asdDefConfig.h" to a new file named "asdConfig.h".
�❍ Edit the file "asdConfig.h" and uncomment the compile directive:
#define ASDIMPL_NO_ILLEGAL_ON_RETURNEVENT

�❍ Re-compile with the option "-DASD_HAVE_CONFIG_H".

3. Reduce the queue size.
The queue size is set to 7 by default and is allocated statically due to static memory management in C and TinyC. Often, especially in
the Single-threaded execution model, a queue size of 2 or even 1 is sufficient. Carry out the following steps to reduce the queue size:

�❍ Open the respective design model in the ASD:Suite ModelBuilder.
�❍ Go to the model properties of the model (by pressing alt-F7).
�❍ Select the verification properties.
�❍ Now the notification event queue size is visible and often has the default value of 7. Enter a value that seems suitable and press "OK".
�❍ First re-verify the model to ensure that there is no queue full (by pressing ctrl-F5). If there is a verification error reporting a queue-

full, then apparently you need to increase the queue size somewhat until the verification error reporting the queue-full is gone.
Reversely, if there is no verification error reporting a queue-full, one might consider reducing the size even further.

�❍ Once verification is succesful, re-generate the code (by pressing F7 or ctrl-F7).
Warning: During execution the (static) queue can overflow if verification was performed with yoking enabled.

Tip: a queue size of 1 also saves on code. It can pay off to change your models such that a queue size of 1 is sufficient.

4. Avoid pointers. One should be careful with using pointers on 8-bit microcontrollers. This results in pointer chasing which has
negative impact on code size.

5. Apply proper abstractions and component responsibilities.
The above are relatively simple and straightforward steps to reduce RAM and/or ROM footprint. However, the way the ASD models
are constructed can also have an impact on RAM and/or ROM size. Typically, the better the responsibilities are distributed amongst
the (ASD) components the more benefical this can be for RAM and/or ROM usage. Further, applying proper abstractions in
your interfaces can also help in 'normalizing' your ASD models and hence avoiding code duplication. For example, consider three
events called "ev1", "ev2", and "ev3" that are made available on an interface that some ASD component is using. When the response
to these three events is the same (or can be made the same), then this leads to code duplication and therefore higher ROM usage.
This can be eliminated by folding these three events onto a single new one that then eliminates this code duplication. Often,
a (positive) side effect is that responsibilities have been divided better resulting in more maintainable ASD models.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/code_integration/c/c_optimization [08/05/2014 13:41:51]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/documentation/user_manual.aspx/9.2.7/modelling/create_im/yoking
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

How to integrate the commandline tools in your development environment

Code integration into your application, supported by your build environment, can start after you have built your models, verified
them, and generated code from them.

Read the following sections for build integration related information supported by the ASD commandline tools.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_gui...aspx/9.2.7/build_integration/build_integration_intro [08/05/2014 13:41:54]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Commandline tools

The commandline tools that are typically used for integration into your build environment are AsdVerify and AsdGenerate.

The AsdVerify can be used to verify models in a batch; it is optimised such that if the models are not (semantically) changed, the
actual verification is not performed and only the verification status is reported. Using the verbosity levels, it is possible to report
the results of each individual check as well as the overall status.

The AsdVerify can also be used to both query models and code. In case the query is performed on models, it can report the results
of each individual check and/or the overall verification status. In case the query is performed on code, it can report if the code was
indeed generated from a verified model and has not been modified by hand.

The AsdGenerate can be used to generate source code from models in a batch; like the AsdVerify it is optimised such that if the
models are not (semantically) changed, the original source code file is not overwritten (if present). This is especially useful in build
environments where make-like tools are used to check dependencies and to build only what is absolutely necessary. Another
reason to simply generate all code (which will not overwrite unchanged files) from within a make-like build system is that there is
no dependency generator from models to code as this requires round-tripping to the ASD hosted services; to do this in a reliable
way is not possible.

Note that for the actual verification and source code generation, the AsdVerify and the AsdGenerate will require a connection to
the ASD hosted services. The possibility to query models and/or code does not require a connection.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/build_integration/tools [08/05/2014 13:41:58]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/documentation/user_manual.aspx/9.2.7/command_prompt/overview
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Integration

The commandline utilities can be used in an automated build environment to build your applications. This section describes some
topics to keep in mind when integrating these utilities into your environment.

Firstly, when using the commandline utilities to verify and/or to generate code, then the build system must have access to the
internet in order to reach the verification engines and the code generators as these are hosted.

Secondly, when using make as the utility to compile and link your applications, then one should know that make is designed to
minimize the build time by only compiling and/or linking what is absolutely necessary. It uses the principle of targets and
dependencies to realise this. The commandline utilities, such as AsdVerify and AsdGenerate are designed and built to support this as
much as possible; for example, AsdGenerate does not overwrite the source file(s) if there are no changes (in other words, the
timestamps of the respective source file(s) do not change and therefore unnecessary compilation is prevented). Consequently, one
has to be extremely careful in constructing the makefile and the dependencies between the various targets. A dependency
statement as shown below will not work in a makefile:

serverComponent.c: server.dm
 AsdGenerate -g -l cpp -v 9.2.3 server.dm

When the ASD design model is 'touched', its timestamp will change in the file system causing the makefile to trigger the dependency
as shown above. However, as the AsdGenerate now notices that the source has not changed, it will not overwrite the source file. As
a result, nothing happens and a subsequent call to make will result in triggering this dependency again.

Finally, also note that undoing changes by hand (instead of using the undo functionality) can have similar strange effects in your
build environment; especially when it is based on make. For example, manually changing a reply as follows: VoidReply to Illegal to
VoidReply implies that the save-button gets enabled and therefore the timestamp of the model is changed when you press the save-
button. However, the generated code contains a timestamp of a version of a model from which the code has been generated. If the
model is not changed syntactically nor semantically but only the timestamp has changed (by an edit-action as described above),
then the code will not be overwritten as the generated code is seen as identical (therefore one could argue that the generated code
is still generated from a correct version of the model despite the fact that the code has a different timestamp of the model it was
generated from).

Tip: use the undo function (control-Z) as much as possible since the enabling and disabling of the save-button is attached to the
undo functionality.

An example of a makefile can be found here. It is based on a simple project with two design models and three interface models. The
models and the (generated) code are in the same directory with the exception of the runtime code which is stored in a separate sub-
directory.

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtime_guide_pdf.aspx/9.2.7/build_integration/integration [08/05/2014 13:42:02]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx
http://community.verum.com/documentation/runtime_guide.aspx/9.2.7/build_integration/makefile_example
http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

ASD Runtime Guide

● Home ● Product ● Technology ● Resources ● Training ● Purchase ● Company

Makefile

"default", "all", "clean" "verify", and "generate" are targets and will
always be executed even if a file named accordingly is present

.PHONY: default all clean verify generate

ASD Runtime

ASD_RT_PATH = ./runtime

Tools and their settings

CC = gcc
CFLAGS = -g -Wall -I/usr/include -I$(ASD_RT_PATH)
LDFLAGS =
AR = ar
ARFLAGS = -cqv

ASD Tools and their settings

ASDPATH = "/cygdrive/c/Program Files (x86)/Verum/ASD Suite Release 4/V9.2.7/"
ASDGENERATE = $(ASDPATH)AsdGenerate
ASDVERIFY = $(ASDPATH)AsdVerify
ASDVERIFYFLAGS = --no-mvr --stop-on-failure
ASDLANGVERSION = -ltinyc -v 9.2.3

Generated headers and sources

GEN_OBJS = $(patsubst %.c, %.o, $(wildcard *Component.c))
GEN_SRCS = $(wildcard *Component.c)
GEN_HEADERS = $(wildcard *Component.h) $(wildcard *ComponentImpl.h) $(wildcard *Interface.h)
GEN_FILES = $(GEN_SRCS) $(GEN_HEADERS)

ASD interface models and design models

ASD_DMS = $(wildcard *.dm)
ASD_IMS = $(wildcard *.im)
ASD_MODELS = $(ASD_IMS) $(ASD_DMS)

Main target to be built (including handwritten code)

MAIN_OBJS = main.o callingclient.o
MAIN_SRC = main.c callingclient.c
MAIN_HEADERS = mytypes.h callingclient.h
MAIN_TARGET = main

Dependencies

Default target to built. When called without arguments, make always builds
first target it finds. In this case, it starts building main

When command 'make all' is given, it also does verification, code generation
followed by compiling and linking the main target

default: $(MAIN_TARGET)
all: verify generate default

Dependencies of ASD Runtime

ASD_RT_PATH = ./runtime
ASD_RT_TARGET = $(ASD_RT_PATH)/libasd_rt.a
include $(ASD_RT_PATH)/asd_runtime.mk

Dependencies of generated code

$(GEN_OBJS): $(GEN_SRCS) $(GEN_HEADERS)

Dependencies of main

$(MAIN_OBJS): $(MAIN_SRC) $(MAIN_HEADERS)
$(MAIN_TARGET): $(MAIN_OBJS) $(GEN_OBJS) $(ASD_RT_TARGET)
 $(CC) $(LDFLAGS) $(MAIN_OBJS) $(GEN_OBJS) $(ASD_RT_TARGET) -o $@

Dependency describing how to generate object file from source

%.o: %.c
 $(CC) $(CFLAGS) -c $< -o $@

Command to verify ASD interface and design models

verify:
 $(ASDVERIFY) --verify $(ASDLANGVERSION) $(ASDVERIFYFLAGS) --recurse --name *.im .
 $(ASDVERIFY) --verify $(ASDLANGVERSION) $(ASDVERIFYFLAGS) --recurse --name *.dm .

Command to generate code from ASD interface and design models.
Note that the generator ONLY overwrites the code IF the code differs from
the one stored currently in the filesystem.

generate:

http://community.verum.com/documentation/runtim...f.aspx/9.2.7/build_integration/makefile_example (1 of 2) [08/05/2014 13:42:07]

http://www.verum.com/
http://www.verum.com/product.aspx
http://www.verum.com/technology.aspx
http://community.verum.com/default.aspx
http://www.verum.com/training.aspx
http://www.verum.com/purchase.aspx
http://www.verum.com/company.aspx

ASD Runtime Guide

 $(ASDGENERATE) -g $(ASDLANGVERSION) --recurse --name *.im .
 $(ASDGENERATE) -g $(ASDLANGVERSION) --all --recurse --name *.dm .

Command to conditionally generate code from ASD interface and design models
It first checks if code has been generated (if not, it is thrown away),
followed by checking the verification status of the model. If the model is
correct, code is generated and otherwise the make process is stopped

Note that the section below is based on shell statements which is simply to
make it more readable and understandable what happens. Make supports similar
statements

generate_if:
 for GEN_CODE in $(GEN_FILES); do \
 $(ASDVERIFY) --query-code $$GEN_CODE; \
 STATUS=$$?; \
 if [$$STATUS = 0]; \
 then \
 echo File $$GEN_CODE : OK; \
 else \
 if [$$STATUS = 2]; \
 then \
 echo File $$GEN_CODE : Out of date and is removed; \
 rm -rf $$GEN_CODE; \
 else \
 echo File $$GEN_CODE : Error and stop; \
 exit 1; \
 fi; \
 fi; \
 done; \
 for MODEL in $(ASD_MODELS); do \
 $(ASDVERIFY) --query-model $$MODEL; \
 STATUS=$$?; \
 if [$$STATUS = 0]; \
 then \
 echo Model $$MODEL : OK. Regenerating code; \
 $(ASDGENERATE) -g $(ASDLANGVERSION) $$MODEL; \
 else \
 if [$$STATUS = 2]; \
 then \
 echo Model $$MODEL : Verification status failed. Reverifying model; \
 $(ASDVERIFY) --verify $(ASDLANGVERSION) $(ASDVERIFYFLAGS) $$MODEL; \
 $(ASDGENERATE) -g $(ASDLANGVERSION) $$MODEL; \
 else \
 echo Model $$MODEL : Error and stop; \
 exit 1; \
 fi; \
 fi; \
 done

Command to clean

clean:
 rm -f *.o $(MAIN_TARGET)
 rm -f $(ASD_RT_PATH)/*.o $(ASD_RT_TARGET)

This does NOT work. If you touch the .dm without actually changing it,
then source is generated but since code is identical, it will not be
overwritten and the make does not continue compile the source, linking it, etc.
#serverComponent.c: server.dm
$(ASDGENERATE) -g $(ASDLANGVERSION) $<

Asd_runtime.mk as included in Makefile above

ASD Runtime

ASD_RT_OBJS = $(patsubst %.c, %.o, $(wildcard $(ASD_RT_PATH)/asd*.c))
ASD_RT_SRC = $(wildcard $(ASD_RT_PATH)/asd*.c)
ASD_RT_HEADERS = $(wildcard $(ASD_RT_PATH)/asd*.h)

Dependencies in ASD runtime

$(ASD_RT_OBJS): $(ASD_RT_SRC) $(ASD_RT_HEADERS)
$(ASD_RT_TARGET): $(ASD_RT_OBJS)
 $(AR) $(ARFLAGS) $@ $(ASD_RT_OBJS)

© 2014 Verum Software Tools BV All rights reserved

Terms of use | Privacy Policy

http://community.verum.com/documentation/runtim...f.aspx/9.2.7/build_integration/makefile_example (2 of 2) [08/05/2014 13:42:07]

http://community.verum.com/help/terms.aspx
http://www.verum.com/help/privacy-policy.aspx

	ABPHMBIIPHIAPBICDEFMDAPNHKPPIAOJIE:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	MJDGMELEDHFJNEMHBCAKLKBFNOEGCNCA:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	FEHLOMIIEMGKOBIHOIFOEEAMBOBLFFBI:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	BLGPOMLKMLNAKOMDGEFAGODLKAOONMCF:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	MKODPJDDJPFHGENBMFOEPOHOLOGNFLJK:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	ONIFEPPMKMEEGJMPMLHPPKMCFKGBBIHH:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	JAPAPCKDOOINKLGPKACFHDFKKCNJFNFL:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	LEALIEFGBHIPHKCIJONCMNKPKCNBEPCN:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	JCPECIIBBEOOKAGLMCGPDONDAFPCGIMG:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	NMIMJNPBBIOHJHBABOEMCNHCCKAHBBDH:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	CKIALEAHEAFGODAFENMLINEPOKPEBBOP:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	EBKPLAMDFOLPNBMCBNHFIBLDGONJFNHL:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	KDGCJFAHPAFIENIBCNPOJHKGLAMKJAMJ:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	EBNCKDKCALHLJEBEMOPAAFNBFKHIFMFMCI:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	MHFIEDGANOMNFDEOCDNAPOLHDIEBCIHI:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	HPNNMADHAGNKFOIJGANJLGIDIKPBKKCN:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	AKCGKMJOMIMCFHEAGBEDLAGPPKPMBJDF:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	ONFOFPPDKHHNIAHMCGKHCPLILHOFNILL:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	GHMOMLGCKPGMJGIPGJHBLKODNMJJMKCB:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	BICGANNOFODIIPJLCCIFEKLLADBNMEEL:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	ALJBFMDAMFCJFHEBPPEMPJFFKAFOMLFNCI:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	PBKDJOANIIEELLIALJOBMJKKFFBIBCAF:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	PBPPFEFMDAFEPDOCJFCBMHAFLCABMAELIB:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	IKFJOLKDIDKMCPILNCDHFKBHMOIKGHMF:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	ACDOIELOGAPKEEBLMCHIKAMHLCJPICKD:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	CGLPDOHOHJIMOKLEHOPKIOGDEAPNKAHD:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	JLPACGFBPPNPGLPBKOIPNBLCNPIHCLMM:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	GBFDPDIHPJCPBJGJGGBDHBHOJEPCILAO:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	GCLOIHODDIBKKHAGDPJMCELLMDNHBIAP:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	CNKENNKNDCNHNKEIKOPFEDJEJMHHKPND:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	CCHJFMDAALBFPALENGNNDDFIMBDOJMJAJN:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	DFOODMBNKLOIKPDMGBHHKMPNLCODPMFMAH:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	PDOFABEMFKEGHBGMHGPNEAEDJPKBMCIB:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	JFFMFMPGKJJEGILILAEOOBOJBGPGDPDMIN:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	KNFMDACILANFIFBMKMFEPIICENHMJNGHDB:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	BLGAIHIDKEMGKENGLIBPFNDHOBODIGML:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	LNLOEPFOJJNJLDHLIHDJIHFBEJGABDJC:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	NFOCIDHPOKCIEDHINFAOEHBDAIECAKLA:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	LOFIEBDBLFAKIACPGDMPJNNPKJGMODFD:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	EOKCOKGPFMDAKPOFCCBOJKKMHBHABJODLP:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	CGHIDBHNKJFLCHMPNINKAPMFFDFMAHHCDJ:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	DMKHEDIHEMNFILAEMKEPFMFMPKPJPKKBOM:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	DNFHCEIFGECLPEGJHMCNABFIPCNAHOBK:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	ICFAGOBGJAGBCGBIDGINCPELDOOKCBHE:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	FBFAHIDFDAAKHNGGINHKINPAJOOJHAAF:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	HLINDIDOBIBLKMFBBJHBPNOAGNPOHJMB:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	DNKBKNMALDFHMAOBDEEOMBLCJEPJJHBA:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	CMFMFMLAADPIDOFKPGBMHCCBEAKHELFMDAIH:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	GHMAHLKAJFFBGBJLMDDIPFKJCJANHKEP:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

	HBNIICKEGGIFFBGIDPGGMAABPEPGFAGO:
	form1:
	x:
	f1:
	f2:
	f3: /wEPDwUENTM4MQ9kFgJmD2QWAgIBEGRkFgICCw8WAh4EVGV4dAUEMjAxNGQYAQUgY3RsMDAkU2l0ZW1hcCR0bV9HZW5lcmljQ29udGVudDEPFCsAAWRkyk7g75f14yM13oS++tyRFGaKwpWq+17r8w4lPayVjGc=

